Metamath Proof Explorer


Theorem ifpbi123d

Description: Equivalence deduction for conditional operator for propositions. (Contributed by AV, 30-Dec-2020) (Proof shortened by Wolf Lammen, 17-Apr-2024)

Ref Expression
Hypotheses ifpbi123d.1 ( 𝜑 → ( 𝜓𝜏 ) )
ifpbi123d.2 ( 𝜑 → ( 𝜒𝜂 ) )
ifpbi123d.3 ( 𝜑 → ( 𝜃𝜁 ) )
Assertion ifpbi123d ( 𝜑 → ( if- ( 𝜓 , 𝜒 , 𝜃 ) ↔ if- ( 𝜏 , 𝜂 , 𝜁 ) ) )

Proof

Step Hyp Ref Expression
1 ifpbi123d.1 ( 𝜑 → ( 𝜓𝜏 ) )
2 ifpbi123d.2 ( 𝜑 → ( 𝜒𝜂 ) )
3 ifpbi123d.3 ( 𝜑 → ( 𝜃𝜁 ) )
4 1 2 imbi12d ( 𝜑 → ( ( 𝜓𝜒 ) ↔ ( 𝜏𝜂 ) ) )
5 1 3 orbi12d ( 𝜑 → ( ( 𝜓𝜃 ) ↔ ( 𝜏𝜁 ) ) )
6 4 5 anbi12d ( 𝜑 → ( ( ( 𝜓𝜒 ) ∧ ( 𝜓𝜃 ) ) ↔ ( ( 𝜏𝜂 ) ∧ ( 𝜏𝜁 ) ) ) )
7 dfifp3 ( if- ( 𝜓 , 𝜒 , 𝜃 ) ↔ ( ( 𝜓𝜒 ) ∧ ( 𝜓𝜃 ) ) )
8 dfifp3 ( if- ( 𝜏 , 𝜂 , 𝜁 ) ↔ ( ( 𝜏𝜂 ) ∧ ( 𝜏𝜁 ) ) )
9 6 7 8 3bitr4g ( 𝜑 → ( if- ( 𝜓 , 𝜒 , 𝜃 ) ↔ if- ( 𝜏 , 𝜂 , 𝜁 ) ) )