Description: Equivalence deduction for conditional operator for propositions. (Contributed by AV, 30-Dec-2020) (Proof shortened by Wolf Lammen, 17-Apr-2024)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ifpbi123d.1 | ⊢ ( 𝜑 → ( 𝜓 ↔ 𝜏 ) ) | |
ifpbi123d.2 | ⊢ ( 𝜑 → ( 𝜒 ↔ 𝜂 ) ) | ||
ifpbi123d.3 | ⊢ ( 𝜑 → ( 𝜃 ↔ 𝜁 ) ) | ||
Assertion | ifpbi123d | ⊢ ( 𝜑 → ( if- ( 𝜓 , 𝜒 , 𝜃 ) ↔ if- ( 𝜏 , 𝜂 , 𝜁 ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ifpbi123d.1 | ⊢ ( 𝜑 → ( 𝜓 ↔ 𝜏 ) ) | |
2 | ifpbi123d.2 | ⊢ ( 𝜑 → ( 𝜒 ↔ 𝜂 ) ) | |
3 | ifpbi123d.3 | ⊢ ( 𝜑 → ( 𝜃 ↔ 𝜁 ) ) | |
4 | 1 2 | imbi12d | ⊢ ( 𝜑 → ( ( 𝜓 → 𝜒 ) ↔ ( 𝜏 → 𝜂 ) ) ) |
5 | 1 3 | orbi12d | ⊢ ( 𝜑 → ( ( 𝜓 ∨ 𝜃 ) ↔ ( 𝜏 ∨ 𝜁 ) ) ) |
6 | 4 5 | anbi12d | ⊢ ( 𝜑 → ( ( ( 𝜓 → 𝜒 ) ∧ ( 𝜓 ∨ 𝜃 ) ) ↔ ( ( 𝜏 → 𝜂 ) ∧ ( 𝜏 ∨ 𝜁 ) ) ) ) |
7 | dfifp3 | ⊢ ( if- ( 𝜓 , 𝜒 , 𝜃 ) ↔ ( ( 𝜓 → 𝜒 ) ∧ ( 𝜓 ∨ 𝜃 ) ) ) | |
8 | dfifp3 | ⊢ ( if- ( 𝜏 , 𝜂 , 𝜁 ) ↔ ( ( 𝜏 → 𝜂 ) ∧ ( 𝜏 ∨ 𝜁 ) ) ) | |
9 | 6 7 8 | 3bitr4g | ⊢ ( 𝜑 → ( if- ( 𝜓 , 𝜒 , 𝜃 ) ↔ if- ( 𝜏 , 𝜂 , 𝜁 ) ) ) |