Step |
Hyp |
Ref |
Expression |
1 |
|
ifpbi123d.1 |
⊢ ( 𝜑 → ( 𝜓 ↔ 𝜏 ) ) |
2 |
|
ifpbi123d.2 |
⊢ ( 𝜑 → ( 𝜒 ↔ 𝜂 ) ) |
3 |
|
ifpbi123d.3 |
⊢ ( 𝜑 → ( 𝜃 ↔ 𝜁 ) ) |
4 |
1 2
|
anbi12d |
⊢ ( 𝜑 → ( ( 𝜓 ∧ 𝜒 ) ↔ ( 𝜏 ∧ 𝜂 ) ) ) |
5 |
1
|
notbid |
⊢ ( 𝜑 → ( ¬ 𝜓 ↔ ¬ 𝜏 ) ) |
6 |
5 3
|
anbi12d |
⊢ ( 𝜑 → ( ( ¬ 𝜓 ∧ 𝜃 ) ↔ ( ¬ 𝜏 ∧ 𝜁 ) ) ) |
7 |
4 6
|
orbi12d |
⊢ ( 𝜑 → ( ( ( 𝜓 ∧ 𝜒 ) ∨ ( ¬ 𝜓 ∧ 𝜃 ) ) ↔ ( ( 𝜏 ∧ 𝜂 ) ∨ ( ¬ 𝜏 ∧ 𝜁 ) ) ) ) |
8 |
|
df-ifp |
⊢ ( if- ( 𝜓 , 𝜒 , 𝜃 ) ↔ ( ( 𝜓 ∧ 𝜒 ) ∨ ( ¬ 𝜓 ∧ 𝜃 ) ) ) |
9 |
|
df-ifp |
⊢ ( if- ( 𝜏 , 𝜂 , 𝜁 ) ↔ ( ( 𝜏 ∧ 𝜂 ) ∨ ( ¬ 𝜏 ∧ 𝜁 ) ) ) |
10 |
7 8 9
|
3bitr4g |
⊢ ( 𝜑 → ( if- ( 𝜓 , 𝜒 , 𝜃 ) ↔ if- ( 𝜏 , 𝜂 , 𝜁 ) ) ) |