Metamath Proof Explorer


Theorem ifpbi123dOLD

Description: Obsolete version of ifpbi123d as of 17-Apr-2024. (Contributed by AV, 30-Dec-2020) (New usage is discouraged.) (Proof modification is discouraged.)

Ref Expression
Hypotheses ifpbi123d.1 ( 𝜑 → ( 𝜓𝜏 ) )
ifpbi123d.2 ( 𝜑 → ( 𝜒𝜂 ) )
ifpbi123d.3 ( 𝜑 → ( 𝜃𝜁 ) )
Assertion ifpbi123dOLD ( 𝜑 → ( if- ( 𝜓 , 𝜒 , 𝜃 ) ↔ if- ( 𝜏 , 𝜂 , 𝜁 ) ) )

Proof

Step Hyp Ref Expression
1 ifpbi123d.1 ( 𝜑 → ( 𝜓𝜏 ) )
2 ifpbi123d.2 ( 𝜑 → ( 𝜒𝜂 ) )
3 ifpbi123d.3 ( 𝜑 → ( 𝜃𝜁 ) )
4 1 2 anbi12d ( 𝜑 → ( ( 𝜓𝜒 ) ↔ ( 𝜏𝜂 ) ) )
5 1 notbid ( 𝜑 → ( ¬ 𝜓 ↔ ¬ 𝜏 ) )
6 5 3 anbi12d ( 𝜑 → ( ( ¬ 𝜓𝜃 ) ↔ ( ¬ 𝜏𝜁 ) ) )
7 4 6 orbi12d ( 𝜑 → ( ( ( 𝜓𝜒 ) ∨ ( ¬ 𝜓𝜃 ) ) ↔ ( ( 𝜏𝜂 ) ∨ ( ¬ 𝜏𝜁 ) ) ) )
8 df-ifp ( if- ( 𝜓 , 𝜒 , 𝜃 ) ↔ ( ( 𝜓𝜒 ) ∨ ( ¬ 𝜓𝜃 ) ) )
9 df-ifp ( if- ( 𝜏 , 𝜂 , 𝜁 ) ↔ ( ( 𝜏𝜂 ) ∨ ( ¬ 𝜏𝜁 ) ) )
10 7 8 9 3bitr4g ( 𝜑 → ( if- ( 𝜓 , 𝜒 , 𝜃 ) ↔ if- ( 𝜏 , 𝜂 , 𝜁 ) ) )