Description: Equivalence deduction for conditional operator for propositions. Convenience theorem for a frequent case. (Contributed by Wolf Lammen, 28-Apr-2024)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ifpbi23d.1 | ⊢ ( 𝜑 → ( 𝜒 ↔ 𝜂 ) ) | |
ifpbi23d.2 | ⊢ ( 𝜑 → ( 𝜃 ↔ 𝜁 ) ) | ||
Assertion | ifpbi23d | ⊢ ( 𝜑 → ( if- ( 𝜓 , 𝜒 , 𝜃 ) ↔ if- ( 𝜓 , 𝜂 , 𝜁 ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ifpbi23d.1 | ⊢ ( 𝜑 → ( 𝜒 ↔ 𝜂 ) ) | |
2 | ifpbi23d.2 | ⊢ ( 𝜑 → ( 𝜃 ↔ 𝜁 ) ) | |
3 | biidd | ⊢ ( 𝜑 → ( 𝜓 ↔ 𝜓 ) ) | |
4 | 3 1 2 | ifpbi123d | ⊢ ( 𝜑 → ( if- ( 𝜓 , 𝜒 , 𝜃 ) ↔ if- ( 𝜓 , 𝜂 , 𝜁 ) ) ) |