Metamath Proof Explorer


Theorem ifpimpda

Description: Separation of the values of the conditional operator for propositions. (Contributed by AV, 30-Dec-2020) (Proof shortened by Wolf Lammen, 27-Feb-2021)

Ref Expression
Hypotheses ifpimpda.1 ( ( 𝜑𝜓 ) → 𝜒 )
ifpimpda.2 ( ( 𝜑 ∧ ¬ 𝜓 ) → 𝜃 )
Assertion ifpimpda ( 𝜑 → if- ( 𝜓 , 𝜒 , 𝜃 ) )

Proof

Step Hyp Ref Expression
1 ifpimpda.1 ( ( 𝜑𝜓 ) → 𝜒 )
2 ifpimpda.2 ( ( 𝜑 ∧ ¬ 𝜓 ) → 𝜃 )
3 1 ex ( 𝜑 → ( 𝜓𝜒 ) )
4 2 ex ( 𝜑 → ( ¬ 𝜓𝜃 ) )
5 dfifp2 ( if- ( 𝜓 , 𝜒 , 𝜃 ) ↔ ( ( 𝜓𝜒 ) ∧ ( ¬ 𝜓𝜃 ) ) )
6 3 4 5 sylanbrc ( 𝜑 → if- ( 𝜓 , 𝜒 , 𝜃 ) )