Description: Conditional operator for the negation of a proposition. (Contributed by BJ, 30-Sep-2019) (Proof shortened by Wolf Lammen, 5-May-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ifpn | ⊢ ( if- ( 𝜑 , 𝜓 , 𝜒 ) ↔ if- ( ¬ 𝜑 , 𝜒 , 𝜓 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ancom | ⊢ ( ( ( ¬ 𝜑 ∨ 𝜓 ) ∧ ( ¬ 𝜑 → 𝜒 ) ) ↔ ( ( ¬ 𝜑 → 𝜒 ) ∧ ( ¬ 𝜑 ∨ 𝜓 ) ) ) | |
| 2 | dfifp5 | ⊢ ( if- ( 𝜑 , 𝜓 , 𝜒 ) ↔ ( ( ¬ 𝜑 ∨ 𝜓 ) ∧ ( ¬ 𝜑 → 𝜒 ) ) ) | |
| 3 | dfifp3 | ⊢ ( if- ( ¬ 𝜑 , 𝜒 , 𝜓 ) ↔ ( ( ¬ 𝜑 → 𝜒 ) ∧ ( ¬ 𝜑 ∨ 𝜓 ) ) ) | |
| 4 | 1 2 3 | 3bitr4i | ⊢ ( if- ( 𝜑 , 𝜓 , 𝜒 ) ↔ if- ( ¬ 𝜑 , 𝜒 , 𝜓 ) ) |