Description: An unordered pair is a singleton or a subset of itself. This theorem is helpful to convert theorems about walks in arbitrary graphs into theorems about walks in pseudographs. (Contributed by AV, 27-Feb-2021)
Ref | Expression | ||
---|---|---|---|
Assertion | ifpprsnss | ⊢ ( 𝑃 = { 𝐴 , 𝐵 } → if- ( 𝐴 = 𝐵 , 𝑃 = { 𝐴 } , { 𝐴 , 𝐵 } ⊆ 𝑃 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | preq2 | ⊢ ( 𝐵 = 𝐴 → { 𝐴 , 𝐵 } = { 𝐴 , 𝐴 } ) | |
2 | dfsn2 | ⊢ { 𝐴 } = { 𝐴 , 𝐴 } | |
3 | 1 2 | eqtr4di | ⊢ ( 𝐵 = 𝐴 → { 𝐴 , 𝐵 } = { 𝐴 } ) |
4 | 3 | eqcoms | ⊢ ( 𝐴 = 𝐵 → { 𝐴 , 𝐵 } = { 𝐴 } ) |
5 | 4 | eqeq2d | ⊢ ( 𝐴 = 𝐵 → ( 𝑃 = { 𝐴 , 𝐵 } ↔ 𝑃 = { 𝐴 } ) ) |
6 | 5 | biimpac | ⊢ ( ( 𝑃 = { 𝐴 , 𝐵 } ∧ 𝐴 = 𝐵 ) → 𝑃 = { 𝐴 } ) |
7 | eqimss2 | ⊢ ( 𝑃 = { 𝐴 , 𝐵 } → { 𝐴 , 𝐵 } ⊆ 𝑃 ) | |
8 | 7 | adantr | ⊢ ( ( 𝑃 = { 𝐴 , 𝐵 } ∧ ¬ 𝐴 = 𝐵 ) → { 𝐴 , 𝐵 } ⊆ 𝑃 ) |
9 | 6 8 | ifpimpda | ⊢ ( 𝑃 = { 𝐴 , 𝐵 } → if- ( 𝐴 = 𝐵 , 𝑃 = { 𝐴 } , { 𝐴 , 𝐵 } ⊆ 𝑃 ) ) |