Metamath Proof Explorer


Theorem ifpsnprss

Description: Lemma for wlkvtxeledg : Two adjacent (not necessarily different) vertices A and B in a walk are incident with an edge E . (Contributed by AV, 4-Apr-2021) (Revised by AV, 5-Nov-2021)

Ref Expression
Assertion ifpsnprss ( if- ( 𝐴 = 𝐵 , 𝐸 = { 𝐴 } , { 𝐴 , 𝐵 } ⊆ 𝐸 ) → { 𝐴 , 𝐵 } ⊆ 𝐸 )

Proof

Step Hyp Ref Expression
1 ssidd ( ( 𝐴 = 𝐵𝐸 = { 𝐴 } ) → { 𝐴 } ⊆ { 𝐴 } )
2 preq2 ( 𝐵 = 𝐴 → { 𝐴 , 𝐵 } = { 𝐴 , 𝐴 } )
3 dfsn2 { 𝐴 } = { 𝐴 , 𝐴 }
4 2 3 eqtr4di ( 𝐵 = 𝐴 → { 𝐴 , 𝐵 } = { 𝐴 } )
5 4 eqcoms ( 𝐴 = 𝐵 → { 𝐴 , 𝐵 } = { 𝐴 } )
6 5 adantr ( ( 𝐴 = 𝐵𝐸 = { 𝐴 } ) → { 𝐴 , 𝐵 } = { 𝐴 } )
7 simpr ( ( 𝐴 = 𝐵𝐸 = { 𝐴 } ) → 𝐸 = { 𝐴 } )
8 1 6 7 3sstr4d ( ( 𝐴 = 𝐵𝐸 = { 𝐴 } ) → { 𝐴 , 𝐵 } ⊆ 𝐸 )
9 8 1fpid3 ( if- ( 𝐴 = 𝐵 , 𝐸 = { 𝐴 } , { 𝐴 , 𝐵 } ⊆ 𝐸 ) → { 𝐴 , 𝐵 } ⊆ 𝐸 )