Metamath Proof Explorer


Theorem ifsb

Description: Distribute a function over an if-clause. (Contributed by Mario Carneiro, 14-Aug-2013)

Ref Expression
Hypotheses ifsb.1 ( if ( 𝜑 , 𝐴 , 𝐵 ) = 𝐴𝐶 = 𝐷 )
ifsb.2 ( if ( 𝜑 , 𝐴 , 𝐵 ) = 𝐵𝐶 = 𝐸 )
Assertion ifsb 𝐶 = if ( 𝜑 , 𝐷 , 𝐸 )

Proof

Step Hyp Ref Expression
1 ifsb.1 ( if ( 𝜑 , 𝐴 , 𝐵 ) = 𝐴𝐶 = 𝐷 )
2 ifsb.2 ( if ( 𝜑 , 𝐴 , 𝐵 ) = 𝐵𝐶 = 𝐸 )
3 iftrue ( 𝜑 → if ( 𝜑 , 𝐴 , 𝐵 ) = 𝐴 )
4 3 1 syl ( 𝜑𝐶 = 𝐷 )
5 iftrue ( 𝜑 → if ( 𝜑 , 𝐷 , 𝐸 ) = 𝐷 )
6 4 5 eqtr4d ( 𝜑𝐶 = if ( 𝜑 , 𝐷 , 𝐸 ) )
7 iffalse ( ¬ 𝜑 → if ( 𝜑 , 𝐴 , 𝐵 ) = 𝐵 )
8 7 2 syl ( ¬ 𝜑𝐶 = 𝐸 )
9 iffalse ( ¬ 𝜑 → if ( 𝜑 , 𝐷 , 𝐸 ) = 𝐸 )
10 8 9 eqtr4d ( ¬ 𝜑𝐶 = if ( 𝜑 , 𝐷 , 𝐸 ) )
11 6 10 pm2.61i 𝐶 = if ( 𝜑 , 𝐷 , 𝐸 )