Metamath Proof Explorer


Theorem ifssun

Description: A conditional class is included in the union of its two alternatives. (Contributed by BJ, 15-Aug-2024)

Ref Expression
Assertion ifssun if ( 𝜑 , 𝐴 , 𝐵 ) ⊆ ( 𝐴𝐵 )

Proof

Step Hyp Ref Expression
1 eqid { 𝑥𝜑 } = { 𝑥𝜑 }
2 1 dfif4 if ( 𝜑 , 𝐴 , 𝐵 ) = ( ( 𝐴𝐵 ) ∩ ( ( 𝐴 ∪ ( V ∖ { 𝑥𝜑 } ) ) ∩ ( 𝐵 ∪ { 𝑥𝜑 } ) ) )
3 inss1 ( ( 𝐴𝐵 ) ∩ ( ( 𝐴 ∪ ( V ∖ { 𝑥𝜑 } ) ) ∩ ( 𝐵 ∪ { 𝑥𝜑 } ) ) ) ⊆ ( 𝐴𝐵 )
4 2 3 eqsstri if ( 𝜑 , 𝐴 , 𝐵 ) ⊆ ( 𝐴𝐵 )