Description: A conditional class is included in the union of its two alternatives. (Contributed by BJ, 15-Aug-2024)
Ref | Expression | ||
---|---|---|---|
Assertion | ifssun | ⊢ if ( 𝜑 , 𝐴 , 𝐵 ) ⊆ ( 𝐴 ∪ 𝐵 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid | ⊢ { 𝑥 ∣ 𝜑 } = { 𝑥 ∣ 𝜑 } | |
2 | 1 | dfif4 | ⊢ if ( 𝜑 , 𝐴 , 𝐵 ) = ( ( 𝐴 ∪ 𝐵 ) ∩ ( ( 𝐴 ∪ ( V ∖ { 𝑥 ∣ 𝜑 } ) ) ∩ ( 𝐵 ∪ { 𝑥 ∣ 𝜑 } ) ) ) |
3 | inss1 | ⊢ ( ( 𝐴 ∪ 𝐵 ) ∩ ( ( 𝐴 ∪ ( V ∖ { 𝑥 ∣ 𝜑 } ) ) ∩ ( 𝐵 ∪ { 𝑥 ∣ 𝜑 } ) ) ) ⊆ ( 𝐴 ∪ 𝐵 ) | |
4 | 2 3 | eqsstri | ⊢ if ( 𝜑 , 𝐴 , 𝐵 ) ⊆ ( 𝐴 ∪ 𝐵 ) |