Metamath Proof Explorer


Theorem iftruei

Description: Inference associated with iftrue . (Contributed by BJ, 7-Oct-2018)

Ref Expression
Hypothesis iftruei.1 𝜑
Assertion iftruei if ( 𝜑 , 𝐴 , 𝐵 ) = 𝐴

Proof

Step Hyp Ref Expression
1 iftruei.1 𝜑
2 iftrue ( 𝜑 → if ( 𝜑 , 𝐴 , 𝐵 ) = 𝐴 )
3 1 2 ax-mp if ( 𝜑 , 𝐴 , 𝐵 ) = 𝐴