Metamath Proof Explorer


Theorem ig1pcl

Description: The monic generator of an ideal is always in the ideal. (Contributed by Stefan O'Rear, 29-Mar-2015) (Proof shortened by AV, 25-Sep-2020)

Ref Expression
Hypotheses ig1pval.p 𝑃 = ( Poly1𝑅 )
ig1pval.g 𝐺 = ( idlGen1p𝑅 )
ig1pcl.u 𝑈 = ( LIdeal ‘ 𝑃 )
Assertion ig1pcl ( ( 𝑅 ∈ DivRing ∧ 𝐼𝑈 ) → ( 𝐺𝐼 ) ∈ 𝐼 )

Proof

Step Hyp Ref Expression
1 ig1pval.p 𝑃 = ( Poly1𝑅 )
2 ig1pval.g 𝐺 = ( idlGen1p𝑅 )
3 ig1pcl.u 𝑈 = ( LIdeal ‘ 𝑃 )
4 fveq2 ( 𝐼 = { ( 0g𝑃 ) } → ( 𝐺𝐼 ) = ( 𝐺 ‘ { ( 0g𝑃 ) } ) )
5 id ( 𝐼 = { ( 0g𝑃 ) } → 𝐼 = { ( 0g𝑃 ) } )
6 4 5 eleq12d ( 𝐼 = { ( 0g𝑃 ) } → ( ( 𝐺𝐼 ) ∈ 𝐼 ↔ ( 𝐺 ‘ { ( 0g𝑃 ) } ) ∈ { ( 0g𝑃 ) } ) )
7 eqid ( 0g𝑃 ) = ( 0g𝑃 )
8 eqid ( deg1𝑅 ) = ( deg1𝑅 )
9 eqid ( Monic1p𝑅 ) = ( Monic1p𝑅 )
10 1 2 7 3 8 9 ig1pval3 ( ( 𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { ( 0g𝑃 ) } ) → ( ( 𝐺𝐼 ) ∈ 𝐼 ∧ ( 𝐺𝐼 ) ∈ ( Monic1p𝑅 ) ∧ ( ( deg1𝑅 ) ‘ ( 𝐺𝐼 ) ) = inf ( ( ( deg1𝑅 ) “ ( 𝐼 ∖ { ( 0g𝑃 ) } ) ) , ℝ , < ) ) )
11 10 simp1d ( ( 𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { ( 0g𝑃 ) } ) → ( 𝐺𝐼 ) ∈ 𝐼 )
12 11 3expa ( ( ( 𝑅 ∈ DivRing ∧ 𝐼𝑈 ) ∧ 𝐼 ≠ { ( 0g𝑃 ) } ) → ( 𝐺𝐼 ) ∈ 𝐼 )
13 drngring ( 𝑅 ∈ DivRing → 𝑅 ∈ Ring )
14 1 2 7 ig1pval2 ( 𝑅 ∈ Ring → ( 𝐺 ‘ { ( 0g𝑃 ) } ) = ( 0g𝑃 ) )
15 13 14 syl ( 𝑅 ∈ DivRing → ( 𝐺 ‘ { ( 0g𝑃 ) } ) = ( 0g𝑃 ) )
16 fvex ( 𝐺 ‘ { ( 0g𝑃 ) } ) ∈ V
17 16 elsn ( ( 𝐺 ‘ { ( 0g𝑃 ) } ) ∈ { ( 0g𝑃 ) } ↔ ( 𝐺 ‘ { ( 0g𝑃 ) } ) = ( 0g𝑃 ) )
18 15 17 sylibr ( 𝑅 ∈ DivRing → ( 𝐺 ‘ { ( 0g𝑃 ) } ) ∈ { ( 0g𝑃 ) } )
19 18 adantr ( ( 𝑅 ∈ DivRing ∧ 𝐼𝑈 ) → ( 𝐺 ‘ { ( 0g𝑃 ) } ) ∈ { ( 0g𝑃 ) } )
20 6 12 19 pm2.61ne ( ( 𝑅 ∈ DivRing ∧ 𝐼𝑈 ) → ( 𝐺𝐼 ) ∈ 𝐼 )