Step |
Hyp |
Ref |
Expression |
1 |
|
ig1pval.p |
⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) |
2 |
|
ig1pval.g |
⊢ 𝐺 = ( idlGen1p ‘ 𝑅 ) |
3 |
|
ig1pcl.u |
⊢ 𝑈 = ( LIdeal ‘ 𝑃 ) |
4 |
|
fveq2 |
⊢ ( 𝐼 = { ( 0g ‘ 𝑃 ) } → ( 𝐺 ‘ 𝐼 ) = ( 𝐺 ‘ { ( 0g ‘ 𝑃 ) } ) ) |
5 |
|
id |
⊢ ( 𝐼 = { ( 0g ‘ 𝑃 ) } → 𝐼 = { ( 0g ‘ 𝑃 ) } ) |
6 |
4 5
|
eleq12d |
⊢ ( 𝐼 = { ( 0g ‘ 𝑃 ) } → ( ( 𝐺 ‘ 𝐼 ) ∈ 𝐼 ↔ ( 𝐺 ‘ { ( 0g ‘ 𝑃 ) } ) ∈ { ( 0g ‘ 𝑃 ) } ) ) |
7 |
|
eqid |
⊢ ( 0g ‘ 𝑃 ) = ( 0g ‘ 𝑃 ) |
8 |
|
eqid |
⊢ ( deg1 ‘ 𝑅 ) = ( deg1 ‘ 𝑅 ) |
9 |
|
eqid |
⊢ ( Monic1p ‘ 𝑅 ) = ( Monic1p ‘ 𝑅 ) |
10 |
1 2 7 3 8 9
|
ig1pval3 |
⊢ ( ( 𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑈 ∧ 𝐼 ≠ { ( 0g ‘ 𝑃 ) } ) → ( ( 𝐺 ‘ 𝐼 ) ∈ 𝐼 ∧ ( 𝐺 ‘ 𝐼 ) ∈ ( Monic1p ‘ 𝑅 ) ∧ ( ( deg1 ‘ 𝑅 ) ‘ ( 𝐺 ‘ 𝐼 ) ) = inf ( ( ( deg1 ‘ 𝑅 ) “ ( 𝐼 ∖ { ( 0g ‘ 𝑃 ) } ) ) , ℝ , < ) ) ) |
11 |
10
|
simp1d |
⊢ ( ( 𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑈 ∧ 𝐼 ≠ { ( 0g ‘ 𝑃 ) } ) → ( 𝐺 ‘ 𝐼 ) ∈ 𝐼 ) |
12 |
11
|
3expa |
⊢ ( ( ( 𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑈 ) ∧ 𝐼 ≠ { ( 0g ‘ 𝑃 ) } ) → ( 𝐺 ‘ 𝐼 ) ∈ 𝐼 ) |
13 |
|
drngring |
⊢ ( 𝑅 ∈ DivRing → 𝑅 ∈ Ring ) |
14 |
1 2 7
|
ig1pval2 |
⊢ ( 𝑅 ∈ Ring → ( 𝐺 ‘ { ( 0g ‘ 𝑃 ) } ) = ( 0g ‘ 𝑃 ) ) |
15 |
13 14
|
syl |
⊢ ( 𝑅 ∈ DivRing → ( 𝐺 ‘ { ( 0g ‘ 𝑃 ) } ) = ( 0g ‘ 𝑃 ) ) |
16 |
|
fvex |
⊢ ( 𝐺 ‘ { ( 0g ‘ 𝑃 ) } ) ∈ V |
17 |
16
|
elsn |
⊢ ( ( 𝐺 ‘ { ( 0g ‘ 𝑃 ) } ) ∈ { ( 0g ‘ 𝑃 ) } ↔ ( 𝐺 ‘ { ( 0g ‘ 𝑃 ) } ) = ( 0g ‘ 𝑃 ) ) |
18 |
15 17
|
sylibr |
⊢ ( 𝑅 ∈ DivRing → ( 𝐺 ‘ { ( 0g ‘ 𝑃 ) } ) ∈ { ( 0g ‘ 𝑃 ) } ) |
19 |
18
|
adantr |
⊢ ( ( 𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑈 ) → ( 𝐺 ‘ { ( 0g ‘ 𝑃 ) } ) ∈ { ( 0g ‘ 𝑃 ) } ) |
20 |
6 12 19
|
pm2.61ne |
⊢ ( ( 𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑈 ) → ( 𝐺 ‘ 𝐼 ) ∈ 𝐼 ) |