Step |
Hyp |
Ref |
Expression |
1 |
|
ig1peu.p |
⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) |
2 |
|
ig1peu.u |
⊢ 𝑈 = ( LIdeal ‘ 𝑃 ) |
3 |
|
ig1peu.z |
⊢ 0 = ( 0g ‘ 𝑃 ) |
4 |
|
ig1peu.m |
⊢ 𝑀 = ( Monic1p ‘ 𝑅 ) |
5 |
|
ig1peu.d |
⊢ 𝐷 = ( deg1 ‘ 𝑅 ) |
6 |
|
eqid |
⊢ ( Base ‘ 𝑃 ) = ( Base ‘ 𝑃 ) |
7 |
6 2
|
lidlss |
⊢ ( 𝐼 ∈ 𝑈 → 𝐼 ⊆ ( Base ‘ 𝑃 ) ) |
8 |
7
|
3ad2ant2 |
⊢ ( ( 𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑈 ∧ 𝐼 ≠ { 0 } ) → 𝐼 ⊆ ( Base ‘ 𝑃 ) ) |
9 |
8
|
ssdifd |
⊢ ( ( 𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑈 ∧ 𝐼 ≠ { 0 } ) → ( 𝐼 ∖ { 0 } ) ⊆ ( ( Base ‘ 𝑃 ) ∖ { 0 } ) ) |
10 |
|
imass2 |
⊢ ( ( 𝐼 ∖ { 0 } ) ⊆ ( ( Base ‘ 𝑃 ) ∖ { 0 } ) → ( 𝐷 “ ( 𝐼 ∖ { 0 } ) ) ⊆ ( 𝐷 “ ( ( Base ‘ 𝑃 ) ∖ { 0 } ) ) ) |
11 |
9 10
|
syl |
⊢ ( ( 𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑈 ∧ 𝐼 ≠ { 0 } ) → ( 𝐷 “ ( 𝐼 ∖ { 0 } ) ) ⊆ ( 𝐷 “ ( ( Base ‘ 𝑃 ) ∖ { 0 } ) ) ) |
12 |
|
drngring |
⊢ ( 𝑅 ∈ DivRing → 𝑅 ∈ Ring ) |
13 |
12
|
3ad2ant1 |
⊢ ( ( 𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑈 ∧ 𝐼 ≠ { 0 } ) → 𝑅 ∈ Ring ) |
14 |
5 1 3 6
|
deg1n0ima |
⊢ ( 𝑅 ∈ Ring → ( 𝐷 “ ( ( Base ‘ 𝑃 ) ∖ { 0 } ) ) ⊆ ℕ0 ) |
15 |
13 14
|
syl |
⊢ ( ( 𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑈 ∧ 𝐼 ≠ { 0 } ) → ( 𝐷 “ ( ( Base ‘ 𝑃 ) ∖ { 0 } ) ) ⊆ ℕ0 ) |
16 |
11 15
|
sstrd |
⊢ ( ( 𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑈 ∧ 𝐼 ≠ { 0 } ) → ( 𝐷 “ ( 𝐼 ∖ { 0 } ) ) ⊆ ℕ0 ) |
17 |
|
nn0uz |
⊢ ℕ0 = ( ℤ≥ ‘ 0 ) |
18 |
16 17
|
sseqtrdi |
⊢ ( ( 𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑈 ∧ 𝐼 ≠ { 0 } ) → ( 𝐷 “ ( 𝐼 ∖ { 0 } ) ) ⊆ ( ℤ≥ ‘ 0 ) ) |
19 |
1
|
ply1ring |
⊢ ( 𝑅 ∈ Ring → 𝑃 ∈ Ring ) |
20 |
13 19
|
syl |
⊢ ( ( 𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑈 ∧ 𝐼 ≠ { 0 } ) → 𝑃 ∈ Ring ) |
21 |
|
simp2 |
⊢ ( ( 𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑈 ∧ 𝐼 ≠ { 0 } ) → 𝐼 ∈ 𝑈 ) |
22 |
2 3
|
lidl0cl |
⊢ ( ( 𝑃 ∈ Ring ∧ 𝐼 ∈ 𝑈 ) → 0 ∈ 𝐼 ) |
23 |
20 21 22
|
syl2anc |
⊢ ( ( 𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑈 ∧ 𝐼 ≠ { 0 } ) → 0 ∈ 𝐼 ) |
24 |
23
|
snssd |
⊢ ( ( 𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑈 ∧ 𝐼 ≠ { 0 } ) → { 0 } ⊆ 𝐼 ) |
25 |
|
simp3 |
⊢ ( ( 𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑈 ∧ 𝐼 ≠ { 0 } ) → 𝐼 ≠ { 0 } ) |
26 |
25
|
necomd |
⊢ ( ( 𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑈 ∧ 𝐼 ≠ { 0 } ) → { 0 } ≠ 𝐼 ) |
27 |
|
pssdifn0 |
⊢ ( ( { 0 } ⊆ 𝐼 ∧ { 0 } ≠ 𝐼 ) → ( 𝐼 ∖ { 0 } ) ≠ ∅ ) |
28 |
24 26 27
|
syl2anc |
⊢ ( ( 𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑈 ∧ 𝐼 ≠ { 0 } ) → ( 𝐼 ∖ { 0 } ) ≠ ∅ ) |
29 |
5 1 6
|
deg1xrf |
⊢ 𝐷 : ( Base ‘ 𝑃 ) ⟶ ℝ* |
30 |
|
ffn |
⊢ ( 𝐷 : ( Base ‘ 𝑃 ) ⟶ ℝ* → 𝐷 Fn ( Base ‘ 𝑃 ) ) |
31 |
29 30
|
ax-mp |
⊢ 𝐷 Fn ( Base ‘ 𝑃 ) |
32 |
31
|
a1i |
⊢ ( ( 𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑈 ∧ 𝐼 ≠ { 0 } ) → 𝐷 Fn ( Base ‘ 𝑃 ) ) |
33 |
8
|
ssdifssd |
⊢ ( ( 𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑈 ∧ 𝐼 ≠ { 0 } ) → ( 𝐼 ∖ { 0 } ) ⊆ ( Base ‘ 𝑃 ) ) |
34 |
|
fnimaeq0 |
⊢ ( ( 𝐷 Fn ( Base ‘ 𝑃 ) ∧ ( 𝐼 ∖ { 0 } ) ⊆ ( Base ‘ 𝑃 ) ) → ( ( 𝐷 “ ( 𝐼 ∖ { 0 } ) ) = ∅ ↔ ( 𝐼 ∖ { 0 } ) = ∅ ) ) |
35 |
32 33 34
|
syl2anc |
⊢ ( ( 𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑈 ∧ 𝐼 ≠ { 0 } ) → ( ( 𝐷 “ ( 𝐼 ∖ { 0 } ) ) = ∅ ↔ ( 𝐼 ∖ { 0 } ) = ∅ ) ) |
36 |
35
|
necon3bid |
⊢ ( ( 𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑈 ∧ 𝐼 ≠ { 0 } ) → ( ( 𝐷 “ ( 𝐼 ∖ { 0 } ) ) ≠ ∅ ↔ ( 𝐼 ∖ { 0 } ) ≠ ∅ ) ) |
37 |
28 36
|
mpbird |
⊢ ( ( 𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑈 ∧ 𝐼 ≠ { 0 } ) → ( 𝐷 “ ( 𝐼 ∖ { 0 } ) ) ≠ ∅ ) |
38 |
|
infssuzcl |
⊢ ( ( ( 𝐷 “ ( 𝐼 ∖ { 0 } ) ) ⊆ ( ℤ≥ ‘ 0 ) ∧ ( 𝐷 “ ( 𝐼 ∖ { 0 } ) ) ≠ ∅ ) → inf ( ( 𝐷 “ ( 𝐼 ∖ { 0 } ) ) , ℝ , < ) ∈ ( 𝐷 “ ( 𝐼 ∖ { 0 } ) ) ) |
39 |
18 37 38
|
syl2anc |
⊢ ( ( 𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑈 ∧ 𝐼 ≠ { 0 } ) → inf ( ( 𝐷 “ ( 𝐼 ∖ { 0 } ) ) , ℝ , < ) ∈ ( 𝐷 “ ( 𝐼 ∖ { 0 } ) ) ) |
40 |
32 33
|
fvelimabd |
⊢ ( ( 𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑈 ∧ 𝐼 ≠ { 0 } ) → ( inf ( ( 𝐷 “ ( 𝐼 ∖ { 0 } ) ) , ℝ , < ) ∈ ( 𝐷 “ ( 𝐼 ∖ { 0 } ) ) ↔ ∃ ℎ ∈ ( 𝐼 ∖ { 0 } ) ( 𝐷 ‘ ℎ ) = inf ( ( 𝐷 “ ( 𝐼 ∖ { 0 } ) ) , ℝ , < ) ) ) |
41 |
39 40
|
mpbid |
⊢ ( ( 𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑈 ∧ 𝐼 ≠ { 0 } ) → ∃ ℎ ∈ ( 𝐼 ∖ { 0 } ) ( 𝐷 ‘ ℎ ) = inf ( ( 𝐷 “ ( 𝐼 ∖ { 0 } ) ) , ℝ , < ) ) |
42 |
20
|
adantr |
⊢ ( ( ( 𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑈 ∧ 𝐼 ≠ { 0 } ) ∧ ℎ ∈ ( 𝐼 ∖ { 0 } ) ) → 𝑃 ∈ Ring ) |
43 |
|
simpl2 |
⊢ ( ( ( 𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑈 ∧ 𝐼 ≠ { 0 } ) ∧ ℎ ∈ ( 𝐼 ∖ { 0 } ) ) → 𝐼 ∈ 𝑈 ) |
44 |
13
|
adantr |
⊢ ( ( ( 𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑈 ∧ 𝐼 ≠ { 0 } ) ∧ ℎ ∈ ( 𝐼 ∖ { 0 } ) ) → 𝑅 ∈ Ring ) |
45 |
|
eqid |
⊢ ( algSc ‘ 𝑃 ) = ( algSc ‘ 𝑃 ) |
46 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
47 |
1 45 46 6
|
ply1sclf |
⊢ ( 𝑅 ∈ Ring → ( algSc ‘ 𝑃 ) : ( Base ‘ 𝑅 ) ⟶ ( Base ‘ 𝑃 ) ) |
48 |
44 47
|
syl |
⊢ ( ( ( 𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑈 ∧ 𝐼 ≠ { 0 } ) ∧ ℎ ∈ ( 𝐼 ∖ { 0 } ) ) → ( algSc ‘ 𝑃 ) : ( Base ‘ 𝑅 ) ⟶ ( Base ‘ 𝑃 ) ) |
49 |
|
simpl1 |
⊢ ( ( ( 𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑈 ∧ 𝐼 ≠ { 0 } ) ∧ ℎ ∈ ( 𝐼 ∖ { 0 } ) ) → 𝑅 ∈ DivRing ) |
50 |
33
|
sselda |
⊢ ( ( ( 𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑈 ∧ 𝐼 ≠ { 0 } ) ∧ ℎ ∈ ( 𝐼 ∖ { 0 } ) ) → ℎ ∈ ( Base ‘ 𝑃 ) ) |
51 |
|
eldifsni |
⊢ ( ℎ ∈ ( 𝐼 ∖ { 0 } ) → ℎ ≠ 0 ) |
52 |
51
|
adantl |
⊢ ( ( ( 𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑈 ∧ 𝐼 ≠ { 0 } ) ∧ ℎ ∈ ( 𝐼 ∖ { 0 } ) ) → ℎ ≠ 0 ) |
53 |
|
eqid |
⊢ ( Unic1p ‘ 𝑅 ) = ( Unic1p ‘ 𝑅 ) |
54 |
1 6 3 53
|
drnguc1p |
⊢ ( ( 𝑅 ∈ DivRing ∧ ℎ ∈ ( Base ‘ 𝑃 ) ∧ ℎ ≠ 0 ) → ℎ ∈ ( Unic1p ‘ 𝑅 ) ) |
55 |
49 50 52 54
|
syl3anc |
⊢ ( ( ( 𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑈 ∧ 𝐼 ≠ { 0 } ) ∧ ℎ ∈ ( 𝐼 ∖ { 0 } ) ) → ℎ ∈ ( Unic1p ‘ 𝑅 ) ) |
56 |
|
eqid |
⊢ ( Unit ‘ 𝑅 ) = ( Unit ‘ 𝑅 ) |
57 |
5 56 53
|
uc1pldg |
⊢ ( ℎ ∈ ( Unic1p ‘ 𝑅 ) → ( ( coe1 ‘ ℎ ) ‘ ( 𝐷 ‘ ℎ ) ) ∈ ( Unit ‘ 𝑅 ) ) |
58 |
55 57
|
syl |
⊢ ( ( ( 𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑈 ∧ 𝐼 ≠ { 0 } ) ∧ ℎ ∈ ( 𝐼 ∖ { 0 } ) ) → ( ( coe1 ‘ ℎ ) ‘ ( 𝐷 ‘ ℎ ) ) ∈ ( Unit ‘ 𝑅 ) ) |
59 |
|
eqid |
⊢ ( invr ‘ 𝑅 ) = ( invr ‘ 𝑅 ) |
60 |
56 59
|
unitinvcl |
⊢ ( ( 𝑅 ∈ Ring ∧ ( ( coe1 ‘ ℎ ) ‘ ( 𝐷 ‘ ℎ ) ) ∈ ( Unit ‘ 𝑅 ) ) → ( ( invr ‘ 𝑅 ) ‘ ( ( coe1 ‘ ℎ ) ‘ ( 𝐷 ‘ ℎ ) ) ) ∈ ( Unit ‘ 𝑅 ) ) |
61 |
44 58 60
|
syl2anc |
⊢ ( ( ( 𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑈 ∧ 𝐼 ≠ { 0 } ) ∧ ℎ ∈ ( 𝐼 ∖ { 0 } ) ) → ( ( invr ‘ 𝑅 ) ‘ ( ( coe1 ‘ ℎ ) ‘ ( 𝐷 ‘ ℎ ) ) ) ∈ ( Unit ‘ 𝑅 ) ) |
62 |
46 56
|
unitcl |
⊢ ( ( ( invr ‘ 𝑅 ) ‘ ( ( coe1 ‘ ℎ ) ‘ ( 𝐷 ‘ ℎ ) ) ) ∈ ( Unit ‘ 𝑅 ) → ( ( invr ‘ 𝑅 ) ‘ ( ( coe1 ‘ ℎ ) ‘ ( 𝐷 ‘ ℎ ) ) ) ∈ ( Base ‘ 𝑅 ) ) |
63 |
61 62
|
syl |
⊢ ( ( ( 𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑈 ∧ 𝐼 ≠ { 0 } ) ∧ ℎ ∈ ( 𝐼 ∖ { 0 } ) ) → ( ( invr ‘ 𝑅 ) ‘ ( ( coe1 ‘ ℎ ) ‘ ( 𝐷 ‘ ℎ ) ) ) ∈ ( Base ‘ 𝑅 ) ) |
64 |
48 63
|
ffvelrnd |
⊢ ( ( ( 𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑈 ∧ 𝐼 ≠ { 0 } ) ∧ ℎ ∈ ( 𝐼 ∖ { 0 } ) ) → ( ( algSc ‘ 𝑃 ) ‘ ( ( invr ‘ 𝑅 ) ‘ ( ( coe1 ‘ ℎ ) ‘ ( 𝐷 ‘ ℎ ) ) ) ) ∈ ( Base ‘ 𝑃 ) ) |
65 |
|
eldifi |
⊢ ( ℎ ∈ ( 𝐼 ∖ { 0 } ) → ℎ ∈ 𝐼 ) |
66 |
65
|
adantl |
⊢ ( ( ( 𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑈 ∧ 𝐼 ≠ { 0 } ) ∧ ℎ ∈ ( 𝐼 ∖ { 0 } ) ) → ℎ ∈ 𝐼 ) |
67 |
|
eqid |
⊢ ( .r ‘ 𝑃 ) = ( .r ‘ 𝑃 ) |
68 |
2 6 67
|
lidlmcl |
⊢ ( ( ( 𝑃 ∈ Ring ∧ 𝐼 ∈ 𝑈 ) ∧ ( ( ( algSc ‘ 𝑃 ) ‘ ( ( invr ‘ 𝑅 ) ‘ ( ( coe1 ‘ ℎ ) ‘ ( 𝐷 ‘ ℎ ) ) ) ) ∈ ( Base ‘ 𝑃 ) ∧ ℎ ∈ 𝐼 ) ) → ( ( ( algSc ‘ 𝑃 ) ‘ ( ( invr ‘ 𝑅 ) ‘ ( ( coe1 ‘ ℎ ) ‘ ( 𝐷 ‘ ℎ ) ) ) ) ( .r ‘ 𝑃 ) ℎ ) ∈ 𝐼 ) |
69 |
42 43 64 66 68
|
syl22anc |
⊢ ( ( ( 𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑈 ∧ 𝐼 ≠ { 0 } ) ∧ ℎ ∈ ( 𝐼 ∖ { 0 } ) ) → ( ( ( algSc ‘ 𝑃 ) ‘ ( ( invr ‘ 𝑅 ) ‘ ( ( coe1 ‘ ℎ ) ‘ ( 𝐷 ‘ ℎ ) ) ) ) ( .r ‘ 𝑃 ) ℎ ) ∈ 𝐼 ) |
70 |
53 4 1 67 45 5 59
|
uc1pmon1p |
⊢ ( ( 𝑅 ∈ Ring ∧ ℎ ∈ ( Unic1p ‘ 𝑅 ) ) → ( ( ( algSc ‘ 𝑃 ) ‘ ( ( invr ‘ 𝑅 ) ‘ ( ( coe1 ‘ ℎ ) ‘ ( 𝐷 ‘ ℎ ) ) ) ) ( .r ‘ 𝑃 ) ℎ ) ∈ 𝑀 ) |
71 |
44 55 70
|
syl2anc |
⊢ ( ( ( 𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑈 ∧ 𝐼 ≠ { 0 } ) ∧ ℎ ∈ ( 𝐼 ∖ { 0 } ) ) → ( ( ( algSc ‘ 𝑃 ) ‘ ( ( invr ‘ 𝑅 ) ‘ ( ( coe1 ‘ ℎ ) ‘ ( 𝐷 ‘ ℎ ) ) ) ) ( .r ‘ 𝑃 ) ℎ ) ∈ 𝑀 ) |
72 |
69 71
|
elind |
⊢ ( ( ( 𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑈 ∧ 𝐼 ≠ { 0 } ) ∧ ℎ ∈ ( 𝐼 ∖ { 0 } ) ) → ( ( ( algSc ‘ 𝑃 ) ‘ ( ( invr ‘ 𝑅 ) ‘ ( ( coe1 ‘ ℎ ) ‘ ( 𝐷 ‘ ℎ ) ) ) ) ( .r ‘ 𝑃 ) ℎ ) ∈ ( 𝐼 ∩ 𝑀 ) ) |
73 |
|
eqid |
⊢ ( RLReg ‘ 𝑅 ) = ( RLReg ‘ 𝑅 ) |
74 |
73 56
|
unitrrg |
⊢ ( 𝑅 ∈ Ring → ( Unit ‘ 𝑅 ) ⊆ ( RLReg ‘ 𝑅 ) ) |
75 |
44 74
|
syl |
⊢ ( ( ( 𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑈 ∧ 𝐼 ≠ { 0 } ) ∧ ℎ ∈ ( 𝐼 ∖ { 0 } ) ) → ( Unit ‘ 𝑅 ) ⊆ ( RLReg ‘ 𝑅 ) ) |
76 |
75 61
|
sseldd |
⊢ ( ( ( 𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑈 ∧ 𝐼 ≠ { 0 } ) ∧ ℎ ∈ ( 𝐼 ∖ { 0 } ) ) → ( ( invr ‘ 𝑅 ) ‘ ( ( coe1 ‘ ℎ ) ‘ ( 𝐷 ‘ ℎ ) ) ) ∈ ( RLReg ‘ 𝑅 ) ) |
77 |
5 1 73 6 67 45
|
deg1mul3 |
⊢ ( ( 𝑅 ∈ Ring ∧ ( ( invr ‘ 𝑅 ) ‘ ( ( coe1 ‘ ℎ ) ‘ ( 𝐷 ‘ ℎ ) ) ) ∈ ( RLReg ‘ 𝑅 ) ∧ ℎ ∈ ( Base ‘ 𝑃 ) ) → ( 𝐷 ‘ ( ( ( algSc ‘ 𝑃 ) ‘ ( ( invr ‘ 𝑅 ) ‘ ( ( coe1 ‘ ℎ ) ‘ ( 𝐷 ‘ ℎ ) ) ) ) ( .r ‘ 𝑃 ) ℎ ) ) = ( 𝐷 ‘ ℎ ) ) |
78 |
44 76 50 77
|
syl3anc |
⊢ ( ( ( 𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑈 ∧ 𝐼 ≠ { 0 } ) ∧ ℎ ∈ ( 𝐼 ∖ { 0 } ) ) → ( 𝐷 ‘ ( ( ( algSc ‘ 𝑃 ) ‘ ( ( invr ‘ 𝑅 ) ‘ ( ( coe1 ‘ ℎ ) ‘ ( 𝐷 ‘ ℎ ) ) ) ) ( .r ‘ 𝑃 ) ℎ ) ) = ( 𝐷 ‘ ℎ ) ) |
79 |
|
fveqeq2 |
⊢ ( 𝑔 = ( ( ( algSc ‘ 𝑃 ) ‘ ( ( invr ‘ 𝑅 ) ‘ ( ( coe1 ‘ ℎ ) ‘ ( 𝐷 ‘ ℎ ) ) ) ) ( .r ‘ 𝑃 ) ℎ ) → ( ( 𝐷 ‘ 𝑔 ) = ( 𝐷 ‘ ℎ ) ↔ ( 𝐷 ‘ ( ( ( algSc ‘ 𝑃 ) ‘ ( ( invr ‘ 𝑅 ) ‘ ( ( coe1 ‘ ℎ ) ‘ ( 𝐷 ‘ ℎ ) ) ) ) ( .r ‘ 𝑃 ) ℎ ) ) = ( 𝐷 ‘ ℎ ) ) ) |
80 |
79
|
rspcev |
⊢ ( ( ( ( ( algSc ‘ 𝑃 ) ‘ ( ( invr ‘ 𝑅 ) ‘ ( ( coe1 ‘ ℎ ) ‘ ( 𝐷 ‘ ℎ ) ) ) ) ( .r ‘ 𝑃 ) ℎ ) ∈ ( 𝐼 ∩ 𝑀 ) ∧ ( 𝐷 ‘ ( ( ( algSc ‘ 𝑃 ) ‘ ( ( invr ‘ 𝑅 ) ‘ ( ( coe1 ‘ ℎ ) ‘ ( 𝐷 ‘ ℎ ) ) ) ) ( .r ‘ 𝑃 ) ℎ ) ) = ( 𝐷 ‘ ℎ ) ) → ∃ 𝑔 ∈ ( 𝐼 ∩ 𝑀 ) ( 𝐷 ‘ 𝑔 ) = ( 𝐷 ‘ ℎ ) ) |
81 |
72 78 80
|
syl2anc |
⊢ ( ( ( 𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑈 ∧ 𝐼 ≠ { 0 } ) ∧ ℎ ∈ ( 𝐼 ∖ { 0 } ) ) → ∃ 𝑔 ∈ ( 𝐼 ∩ 𝑀 ) ( 𝐷 ‘ 𝑔 ) = ( 𝐷 ‘ ℎ ) ) |
82 |
|
eqeq2 |
⊢ ( ( 𝐷 ‘ ℎ ) = inf ( ( 𝐷 “ ( 𝐼 ∖ { 0 } ) ) , ℝ , < ) → ( ( 𝐷 ‘ 𝑔 ) = ( 𝐷 ‘ ℎ ) ↔ ( 𝐷 ‘ 𝑔 ) = inf ( ( 𝐷 “ ( 𝐼 ∖ { 0 } ) ) , ℝ , < ) ) ) |
83 |
82
|
rexbidv |
⊢ ( ( 𝐷 ‘ ℎ ) = inf ( ( 𝐷 “ ( 𝐼 ∖ { 0 } ) ) , ℝ , < ) → ( ∃ 𝑔 ∈ ( 𝐼 ∩ 𝑀 ) ( 𝐷 ‘ 𝑔 ) = ( 𝐷 ‘ ℎ ) ↔ ∃ 𝑔 ∈ ( 𝐼 ∩ 𝑀 ) ( 𝐷 ‘ 𝑔 ) = inf ( ( 𝐷 “ ( 𝐼 ∖ { 0 } ) ) , ℝ , < ) ) ) |
84 |
81 83
|
syl5ibcom |
⊢ ( ( ( 𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑈 ∧ 𝐼 ≠ { 0 } ) ∧ ℎ ∈ ( 𝐼 ∖ { 0 } ) ) → ( ( 𝐷 ‘ ℎ ) = inf ( ( 𝐷 “ ( 𝐼 ∖ { 0 } ) ) , ℝ , < ) → ∃ 𝑔 ∈ ( 𝐼 ∩ 𝑀 ) ( 𝐷 ‘ 𝑔 ) = inf ( ( 𝐷 “ ( 𝐼 ∖ { 0 } ) ) , ℝ , < ) ) ) |
85 |
84
|
rexlimdva |
⊢ ( ( 𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑈 ∧ 𝐼 ≠ { 0 } ) → ( ∃ ℎ ∈ ( 𝐼 ∖ { 0 } ) ( 𝐷 ‘ ℎ ) = inf ( ( 𝐷 “ ( 𝐼 ∖ { 0 } ) ) , ℝ , < ) → ∃ 𝑔 ∈ ( 𝐼 ∩ 𝑀 ) ( 𝐷 ‘ 𝑔 ) = inf ( ( 𝐷 “ ( 𝐼 ∖ { 0 } ) ) , ℝ , < ) ) ) |
86 |
41 85
|
mpd |
⊢ ( ( 𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑈 ∧ 𝐼 ≠ { 0 } ) → ∃ 𝑔 ∈ ( 𝐼 ∩ 𝑀 ) ( 𝐷 ‘ 𝑔 ) = inf ( ( 𝐷 “ ( 𝐼 ∖ { 0 } ) ) , ℝ , < ) ) |
87 |
|
eqid |
⊢ ( -g ‘ 𝑃 ) = ( -g ‘ 𝑃 ) |
88 |
13
|
ad2antrr |
⊢ ( ( ( ( 𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑈 ∧ 𝐼 ≠ { 0 } ) ∧ ( 𝑔 ∈ ( 𝐼 ∩ 𝑀 ) ∧ ℎ ∈ ( 𝐼 ∩ 𝑀 ) ) ) ∧ ( ( 𝐷 ‘ 𝑔 ) = inf ( ( 𝐷 “ ( 𝐼 ∖ { 0 } ) ) , ℝ , < ) ∧ ( 𝐷 ‘ ℎ ) = inf ( ( 𝐷 “ ( 𝐼 ∖ { 0 } ) ) , ℝ , < ) ) ) → 𝑅 ∈ Ring ) |
89 |
|
simprl |
⊢ ( ( ( 𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑈 ∧ 𝐼 ≠ { 0 } ) ∧ ( 𝑔 ∈ ( 𝐼 ∩ 𝑀 ) ∧ ℎ ∈ ( 𝐼 ∩ 𝑀 ) ) ) → 𝑔 ∈ ( 𝐼 ∩ 𝑀 ) ) |
90 |
89
|
elin2d |
⊢ ( ( ( 𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑈 ∧ 𝐼 ≠ { 0 } ) ∧ ( 𝑔 ∈ ( 𝐼 ∩ 𝑀 ) ∧ ℎ ∈ ( 𝐼 ∩ 𝑀 ) ) ) → 𝑔 ∈ 𝑀 ) |
91 |
90
|
adantr |
⊢ ( ( ( ( 𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑈 ∧ 𝐼 ≠ { 0 } ) ∧ ( 𝑔 ∈ ( 𝐼 ∩ 𝑀 ) ∧ ℎ ∈ ( 𝐼 ∩ 𝑀 ) ) ) ∧ ( ( 𝐷 ‘ 𝑔 ) = inf ( ( 𝐷 “ ( 𝐼 ∖ { 0 } ) ) , ℝ , < ) ∧ ( 𝐷 ‘ ℎ ) = inf ( ( 𝐷 “ ( 𝐼 ∖ { 0 } ) ) , ℝ , < ) ) ) → 𝑔 ∈ 𝑀 ) |
92 |
|
simprl |
⊢ ( ( ( ( 𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑈 ∧ 𝐼 ≠ { 0 } ) ∧ ( 𝑔 ∈ ( 𝐼 ∩ 𝑀 ) ∧ ℎ ∈ ( 𝐼 ∩ 𝑀 ) ) ) ∧ ( ( 𝐷 ‘ 𝑔 ) = inf ( ( 𝐷 “ ( 𝐼 ∖ { 0 } ) ) , ℝ , < ) ∧ ( 𝐷 ‘ ℎ ) = inf ( ( 𝐷 “ ( 𝐼 ∖ { 0 } ) ) , ℝ , < ) ) ) → ( 𝐷 ‘ 𝑔 ) = inf ( ( 𝐷 “ ( 𝐼 ∖ { 0 } ) ) , ℝ , < ) ) |
93 |
|
simprr |
⊢ ( ( ( 𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑈 ∧ 𝐼 ≠ { 0 } ) ∧ ( 𝑔 ∈ ( 𝐼 ∩ 𝑀 ) ∧ ℎ ∈ ( 𝐼 ∩ 𝑀 ) ) ) → ℎ ∈ ( 𝐼 ∩ 𝑀 ) ) |
94 |
93
|
elin2d |
⊢ ( ( ( 𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑈 ∧ 𝐼 ≠ { 0 } ) ∧ ( 𝑔 ∈ ( 𝐼 ∩ 𝑀 ) ∧ ℎ ∈ ( 𝐼 ∩ 𝑀 ) ) ) → ℎ ∈ 𝑀 ) |
95 |
94
|
adantr |
⊢ ( ( ( ( 𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑈 ∧ 𝐼 ≠ { 0 } ) ∧ ( 𝑔 ∈ ( 𝐼 ∩ 𝑀 ) ∧ ℎ ∈ ( 𝐼 ∩ 𝑀 ) ) ) ∧ ( ( 𝐷 ‘ 𝑔 ) = inf ( ( 𝐷 “ ( 𝐼 ∖ { 0 } ) ) , ℝ , < ) ∧ ( 𝐷 ‘ ℎ ) = inf ( ( 𝐷 “ ( 𝐼 ∖ { 0 } ) ) , ℝ , < ) ) ) → ℎ ∈ 𝑀 ) |
96 |
|
simprr |
⊢ ( ( ( ( 𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑈 ∧ 𝐼 ≠ { 0 } ) ∧ ( 𝑔 ∈ ( 𝐼 ∩ 𝑀 ) ∧ ℎ ∈ ( 𝐼 ∩ 𝑀 ) ) ) ∧ ( ( 𝐷 ‘ 𝑔 ) = inf ( ( 𝐷 “ ( 𝐼 ∖ { 0 } ) ) , ℝ , < ) ∧ ( 𝐷 ‘ ℎ ) = inf ( ( 𝐷 “ ( 𝐼 ∖ { 0 } ) ) , ℝ , < ) ) ) → ( 𝐷 ‘ ℎ ) = inf ( ( 𝐷 “ ( 𝐼 ∖ { 0 } ) ) , ℝ , < ) ) |
97 |
5 4 1 87 88 91 92 95 96
|
deg1submon1p |
⊢ ( ( ( ( 𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑈 ∧ 𝐼 ≠ { 0 } ) ∧ ( 𝑔 ∈ ( 𝐼 ∩ 𝑀 ) ∧ ℎ ∈ ( 𝐼 ∩ 𝑀 ) ) ) ∧ ( ( 𝐷 ‘ 𝑔 ) = inf ( ( 𝐷 “ ( 𝐼 ∖ { 0 } ) ) , ℝ , < ) ∧ ( 𝐷 ‘ ℎ ) = inf ( ( 𝐷 “ ( 𝐼 ∖ { 0 } ) ) , ℝ , < ) ) ) → ( 𝐷 ‘ ( 𝑔 ( -g ‘ 𝑃 ) ℎ ) ) < inf ( ( 𝐷 “ ( 𝐼 ∖ { 0 } ) ) , ℝ , < ) ) |
98 |
97
|
ex |
⊢ ( ( ( 𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑈 ∧ 𝐼 ≠ { 0 } ) ∧ ( 𝑔 ∈ ( 𝐼 ∩ 𝑀 ) ∧ ℎ ∈ ( 𝐼 ∩ 𝑀 ) ) ) → ( ( ( 𝐷 ‘ 𝑔 ) = inf ( ( 𝐷 “ ( 𝐼 ∖ { 0 } ) ) , ℝ , < ) ∧ ( 𝐷 ‘ ℎ ) = inf ( ( 𝐷 “ ( 𝐼 ∖ { 0 } ) ) , ℝ , < ) ) → ( 𝐷 ‘ ( 𝑔 ( -g ‘ 𝑃 ) ℎ ) ) < inf ( ( 𝐷 “ ( 𝐼 ∖ { 0 } ) ) , ℝ , < ) ) ) |
99 |
18
|
ad2antrr |
⊢ ( ( ( ( 𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑈 ∧ 𝐼 ≠ { 0 } ) ∧ ( 𝑔 ∈ ( 𝐼 ∩ 𝑀 ) ∧ ℎ ∈ ( 𝐼 ∩ 𝑀 ) ) ) ∧ ( 𝑔 ( -g ‘ 𝑃 ) ℎ ) ≠ 0 ) → ( 𝐷 “ ( 𝐼 ∖ { 0 } ) ) ⊆ ( ℤ≥ ‘ 0 ) ) |
100 |
31
|
a1i |
⊢ ( ( ( ( 𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑈 ∧ 𝐼 ≠ { 0 } ) ∧ ( 𝑔 ∈ ( 𝐼 ∩ 𝑀 ) ∧ ℎ ∈ ( 𝐼 ∩ 𝑀 ) ) ) ∧ ( 𝑔 ( -g ‘ 𝑃 ) ℎ ) ≠ 0 ) → 𝐷 Fn ( Base ‘ 𝑃 ) ) |
101 |
33
|
ad2antrr |
⊢ ( ( ( ( 𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑈 ∧ 𝐼 ≠ { 0 } ) ∧ ( 𝑔 ∈ ( 𝐼 ∩ 𝑀 ) ∧ ℎ ∈ ( 𝐼 ∩ 𝑀 ) ) ) ∧ ( 𝑔 ( -g ‘ 𝑃 ) ℎ ) ≠ 0 ) → ( 𝐼 ∖ { 0 } ) ⊆ ( Base ‘ 𝑃 ) ) |
102 |
20
|
adantr |
⊢ ( ( ( 𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑈 ∧ 𝐼 ≠ { 0 } ) ∧ ( 𝑔 ∈ ( 𝐼 ∩ 𝑀 ) ∧ ℎ ∈ ( 𝐼 ∩ 𝑀 ) ) ) → 𝑃 ∈ Ring ) |
103 |
|
simpl2 |
⊢ ( ( ( 𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑈 ∧ 𝐼 ≠ { 0 } ) ∧ ( 𝑔 ∈ ( 𝐼 ∩ 𝑀 ) ∧ ℎ ∈ ( 𝐼 ∩ 𝑀 ) ) ) → 𝐼 ∈ 𝑈 ) |
104 |
89
|
elin1d |
⊢ ( ( ( 𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑈 ∧ 𝐼 ≠ { 0 } ) ∧ ( 𝑔 ∈ ( 𝐼 ∩ 𝑀 ) ∧ ℎ ∈ ( 𝐼 ∩ 𝑀 ) ) ) → 𝑔 ∈ 𝐼 ) |
105 |
93
|
elin1d |
⊢ ( ( ( 𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑈 ∧ 𝐼 ≠ { 0 } ) ∧ ( 𝑔 ∈ ( 𝐼 ∩ 𝑀 ) ∧ ℎ ∈ ( 𝐼 ∩ 𝑀 ) ) ) → ℎ ∈ 𝐼 ) |
106 |
2 87
|
lidlsubcl |
⊢ ( ( ( 𝑃 ∈ Ring ∧ 𝐼 ∈ 𝑈 ) ∧ ( 𝑔 ∈ 𝐼 ∧ ℎ ∈ 𝐼 ) ) → ( 𝑔 ( -g ‘ 𝑃 ) ℎ ) ∈ 𝐼 ) |
107 |
102 103 104 105 106
|
syl22anc |
⊢ ( ( ( 𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑈 ∧ 𝐼 ≠ { 0 } ) ∧ ( 𝑔 ∈ ( 𝐼 ∩ 𝑀 ) ∧ ℎ ∈ ( 𝐼 ∩ 𝑀 ) ) ) → ( 𝑔 ( -g ‘ 𝑃 ) ℎ ) ∈ 𝐼 ) |
108 |
107
|
adantr |
⊢ ( ( ( ( 𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑈 ∧ 𝐼 ≠ { 0 } ) ∧ ( 𝑔 ∈ ( 𝐼 ∩ 𝑀 ) ∧ ℎ ∈ ( 𝐼 ∩ 𝑀 ) ) ) ∧ ( 𝑔 ( -g ‘ 𝑃 ) ℎ ) ≠ 0 ) → ( 𝑔 ( -g ‘ 𝑃 ) ℎ ) ∈ 𝐼 ) |
109 |
|
simpr |
⊢ ( ( ( ( 𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑈 ∧ 𝐼 ≠ { 0 } ) ∧ ( 𝑔 ∈ ( 𝐼 ∩ 𝑀 ) ∧ ℎ ∈ ( 𝐼 ∩ 𝑀 ) ) ) ∧ ( 𝑔 ( -g ‘ 𝑃 ) ℎ ) ≠ 0 ) → ( 𝑔 ( -g ‘ 𝑃 ) ℎ ) ≠ 0 ) |
110 |
|
eldifsn |
⊢ ( ( 𝑔 ( -g ‘ 𝑃 ) ℎ ) ∈ ( 𝐼 ∖ { 0 } ) ↔ ( ( 𝑔 ( -g ‘ 𝑃 ) ℎ ) ∈ 𝐼 ∧ ( 𝑔 ( -g ‘ 𝑃 ) ℎ ) ≠ 0 ) ) |
111 |
108 109 110
|
sylanbrc |
⊢ ( ( ( ( 𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑈 ∧ 𝐼 ≠ { 0 } ) ∧ ( 𝑔 ∈ ( 𝐼 ∩ 𝑀 ) ∧ ℎ ∈ ( 𝐼 ∩ 𝑀 ) ) ) ∧ ( 𝑔 ( -g ‘ 𝑃 ) ℎ ) ≠ 0 ) → ( 𝑔 ( -g ‘ 𝑃 ) ℎ ) ∈ ( 𝐼 ∖ { 0 } ) ) |
112 |
|
fnfvima |
⊢ ( ( 𝐷 Fn ( Base ‘ 𝑃 ) ∧ ( 𝐼 ∖ { 0 } ) ⊆ ( Base ‘ 𝑃 ) ∧ ( 𝑔 ( -g ‘ 𝑃 ) ℎ ) ∈ ( 𝐼 ∖ { 0 } ) ) → ( 𝐷 ‘ ( 𝑔 ( -g ‘ 𝑃 ) ℎ ) ) ∈ ( 𝐷 “ ( 𝐼 ∖ { 0 } ) ) ) |
113 |
100 101 111 112
|
syl3anc |
⊢ ( ( ( ( 𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑈 ∧ 𝐼 ≠ { 0 } ) ∧ ( 𝑔 ∈ ( 𝐼 ∩ 𝑀 ) ∧ ℎ ∈ ( 𝐼 ∩ 𝑀 ) ) ) ∧ ( 𝑔 ( -g ‘ 𝑃 ) ℎ ) ≠ 0 ) → ( 𝐷 ‘ ( 𝑔 ( -g ‘ 𝑃 ) ℎ ) ) ∈ ( 𝐷 “ ( 𝐼 ∖ { 0 } ) ) ) |
114 |
|
infssuzle |
⊢ ( ( ( 𝐷 “ ( 𝐼 ∖ { 0 } ) ) ⊆ ( ℤ≥ ‘ 0 ) ∧ ( 𝐷 ‘ ( 𝑔 ( -g ‘ 𝑃 ) ℎ ) ) ∈ ( 𝐷 “ ( 𝐼 ∖ { 0 } ) ) ) → inf ( ( 𝐷 “ ( 𝐼 ∖ { 0 } ) ) , ℝ , < ) ≤ ( 𝐷 ‘ ( 𝑔 ( -g ‘ 𝑃 ) ℎ ) ) ) |
115 |
99 113 114
|
syl2anc |
⊢ ( ( ( ( 𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑈 ∧ 𝐼 ≠ { 0 } ) ∧ ( 𝑔 ∈ ( 𝐼 ∩ 𝑀 ) ∧ ℎ ∈ ( 𝐼 ∩ 𝑀 ) ) ) ∧ ( 𝑔 ( -g ‘ 𝑃 ) ℎ ) ≠ 0 ) → inf ( ( 𝐷 “ ( 𝐼 ∖ { 0 } ) ) , ℝ , < ) ≤ ( 𝐷 ‘ ( 𝑔 ( -g ‘ 𝑃 ) ℎ ) ) ) |
116 |
115
|
ex |
⊢ ( ( ( 𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑈 ∧ 𝐼 ≠ { 0 } ) ∧ ( 𝑔 ∈ ( 𝐼 ∩ 𝑀 ) ∧ ℎ ∈ ( 𝐼 ∩ 𝑀 ) ) ) → ( ( 𝑔 ( -g ‘ 𝑃 ) ℎ ) ≠ 0 → inf ( ( 𝐷 “ ( 𝐼 ∖ { 0 } ) ) , ℝ , < ) ≤ ( 𝐷 ‘ ( 𝑔 ( -g ‘ 𝑃 ) ℎ ) ) ) ) |
117 |
|
imassrn |
⊢ ( 𝐷 “ ( 𝐼 ∖ { 0 } ) ) ⊆ ran 𝐷 |
118 |
|
frn |
⊢ ( 𝐷 : ( Base ‘ 𝑃 ) ⟶ ℝ* → ran 𝐷 ⊆ ℝ* ) |
119 |
29 118
|
ax-mp |
⊢ ran 𝐷 ⊆ ℝ* |
120 |
117 119
|
sstri |
⊢ ( 𝐷 “ ( 𝐼 ∖ { 0 } ) ) ⊆ ℝ* |
121 |
120 39
|
sselid |
⊢ ( ( 𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑈 ∧ 𝐼 ≠ { 0 } ) → inf ( ( 𝐷 “ ( 𝐼 ∖ { 0 } ) ) , ℝ , < ) ∈ ℝ* ) |
122 |
121
|
adantr |
⊢ ( ( ( 𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑈 ∧ 𝐼 ≠ { 0 } ) ∧ ( 𝑔 ∈ ( 𝐼 ∩ 𝑀 ) ∧ ℎ ∈ ( 𝐼 ∩ 𝑀 ) ) ) → inf ( ( 𝐷 “ ( 𝐼 ∖ { 0 } ) ) , ℝ , < ) ∈ ℝ* ) |
123 |
|
ringgrp |
⊢ ( 𝑃 ∈ Ring → 𝑃 ∈ Grp ) |
124 |
20 123
|
syl |
⊢ ( ( 𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑈 ∧ 𝐼 ≠ { 0 } ) → 𝑃 ∈ Grp ) |
125 |
124
|
adantr |
⊢ ( ( ( 𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑈 ∧ 𝐼 ≠ { 0 } ) ∧ ( 𝑔 ∈ ( 𝐼 ∩ 𝑀 ) ∧ ℎ ∈ ( 𝐼 ∩ 𝑀 ) ) ) → 𝑃 ∈ Grp ) |
126 |
|
inss1 |
⊢ ( 𝐼 ∩ 𝑀 ) ⊆ 𝐼 |
127 |
126 8
|
sstrid |
⊢ ( ( 𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑈 ∧ 𝐼 ≠ { 0 } ) → ( 𝐼 ∩ 𝑀 ) ⊆ ( Base ‘ 𝑃 ) ) |
128 |
127
|
adantr |
⊢ ( ( ( 𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑈 ∧ 𝐼 ≠ { 0 } ) ∧ ( 𝑔 ∈ ( 𝐼 ∩ 𝑀 ) ∧ ℎ ∈ ( 𝐼 ∩ 𝑀 ) ) ) → ( 𝐼 ∩ 𝑀 ) ⊆ ( Base ‘ 𝑃 ) ) |
129 |
128 89
|
sseldd |
⊢ ( ( ( 𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑈 ∧ 𝐼 ≠ { 0 } ) ∧ ( 𝑔 ∈ ( 𝐼 ∩ 𝑀 ) ∧ ℎ ∈ ( 𝐼 ∩ 𝑀 ) ) ) → 𝑔 ∈ ( Base ‘ 𝑃 ) ) |
130 |
128 93
|
sseldd |
⊢ ( ( ( 𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑈 ∧ 𝐼 ≠ { 0 } ) ∧ ( 𝑔 ∈ ( 𝐼 ∩ 𝑀 ) ∧ ℎ ∈ ( 𝐼 ∩ 𝑀 ) ) ) → ℎ ∈ ( Base ‘ 𝑃 ) ) |
131 |
6 87
|
grpsubcl |
⊢ ( ( 𝑃 ∈ Grp ∧ 𝑔 ∈ ( Base ‘ 𝑃 ) ∧ ℎ ∈ ( Base ‘ 𝑃 ) ) → ( 𝑔 ( -g ‘ 𝑃 ) ℎ ) ∈ ( Base ‘ 𝑃 ) ) |
132 |
125 129 130 131
|
syl3anc |
⊢ ( ( ( 𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑈 ∧ 𝐼 ≠ { 0 } ) ∧ ( 𝑔 ∈ ( 𝐼 ∩ 𝑀 ) ∧ ℎ ∈ ( 𝐼 ∩ 𝑀 ) ) ) → ( 𝑔 ( -g ‘ 𝑃 ) ℎ ) ∈ ( Base ‘ 𝑃 ) ) |
133 |
5 1 6
|
deg1xrcl |
⊢ ( ( 𝑔 ( -g ‘ 𝑃 ) ℎ ) ∈ ( Base ‘ 𝑃 ) → ( 𝐷 ‘ ( 𝑔 ( -g ‘ 𝑃 ) ℎ ) ) ∈ ℝ* ) |
134 |
132 133
|
syl |
⊢ ( ( ( 𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑈 ∧ 𝐼 ≠ { 0 } ) ∧ ( 𝑔 ∈ ( 𝐼 ∩ 𝑀 ) ∧ ℎ ∈ ( 𝐼 ∩ 𝑀 ) ) ) → ( 𝐷 ‘ ( 𝑔 ( -g ‘ 𝑃 ) ℎ ) ) ∈ ℝ* ) |
135 |
122 134
|
xrlenltd |
⊢ ( ( ( 𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑈 ∧ 𝐼 ≠ { 0 } ) ∧ ( 𝑔 ∈ ( 𝐼 ∩ 𝑀 ) ∧ ℎ ∈ ( 𝐼 ∩ 𝑀 ) ) ) → ( inf ( ( 𝐷 “ ( 𝐼 ∖ { 0 } ) ) , ℝ , < ) ≤ ( 𝐷 ‘ ( 𝑔 ( -g ‘ 𝑃 ) ℎ ) ) ↔ ¬ ( 𝐷 ‘ ( 𝑔 ( -g ‘ 𝑃 ) ℎ ) ) < inf ( ( 𝐷 “ ( 𝐼 ∖ { 0 } ) ) , ℝ , < ) ) ) |
136 |
116 135
|
sylibd |
⊢ ( ( ( 𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑈 ∧ 𝐼 ≠ { 0 } ) ∧ ( 𝑔 ∈ ( 𝐼 ∩ 𝑀 ) ∧ ℎ ∈ ( 𝐼 ∩ 𝑀 ) ) ) → ( ( 𝑔 ( -g ‘ 𝑃 ) ℎ ) ≠ 0 → ¬ ( 𝐷 ‘ ( 𝑔 ( -g ‘ 𝑃 ) ℎ ) ) < inf ( ( 𝐷 “ ( 𝐼 ∖ { 0 } ) ) , ℝ , < ) ) ) |
137 |
136
|
necon4ad |
⊢ ( ( ( 𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑈 ∧ 𝐼 ≠ { 0 } ) ∧ ( 𝑔 ∈ ( 𝐼 ∩ 𝑀 ) ∧ ℎ ∈ ( 𝐼 ∩ 𝑀 ) ) ) → ( ( 𝐷 ‘ ( 𝑔 ( -g ‘ 𝑃 ) ℎ ) ) < inf ( ( 𝐷 “ ( 𝐼 ∖ { 0 } ) ) , ℝ , < ) → ( 𝑔 ( -g ‘ 𝑃 ) ℎ ) = 0 ) ) |
138 |
98 137
|
syld |
⊢ ( ( ( 𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑈 ∧ 𝐼 ≠ { 0 } ) ∧ ( 𝑔 ∈ ( 𝐼 ∩ 𝑀 ) ∧ ℎ ∈ ( 𝐼 ∩ 𝑀 ) ) ) → ( ( ( 𝐷 ‘ 𝑔 ) = inf ( ( 𝐷 “ ( 𝐼 ∖ { 0 } ) ) , ℝ , < ) ∧ ( 𝐷 ‘ ℎ ) = inf ( ( 𝐷 “ ( 𝐼 ∖ { 0 } ) ) , ℝ , < ) ) → ( 𝑔 ( -g ‘ 𝑃 ) ℎ ) = 0 ) ) |
139 |
6 3 87
|
grpsubeq0 |
⊢ ( ( 𝑃 ∈ Grp ∧ 𝑔 ∈ ( Base ‘ 𝑃 ) ∧ ℎ ∈ ( Base ‘ 𝑃 ) ) → ( ( 𝑔 ( -g ‘ 𝑃 ) ℎ ) = 0 ↔ 𝑔 = ℎ ) ) |
140 |
125 129 130 139
|
syl3anc |
⊢ ( ( ( 𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑈 ∧ 𝐼 ≠ { 0 } ) ∧ ( 𝑔 ∈ ( 𝐼 ∩ 𝑀 ) ∧ ℎ ∈ ( 𝐼 ∩ 𝑀 ) ) ) → ( ( 𝑔 ( -g ‘ 𝑃 ) ℎ ) = 0 ↔ 𝑔 = ℎ ) ) |
141 |
138 140
|
sylibd |
⊢ ( ( ( 𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑈 ∧ 𝐼 ≠ { 0 } ) ∧ ( 𝑔 ∈ ( 𝐼 ∩ 𝑀 ) ∧ ℎ ∈ ( 𝐼 ∩ 𝑀 ) ) ) → ( ( ( 𝐷 ‘ 𝑔 ) = inf ( ( 𝐷 “ ( 𝐼 ∖ { 0 } ) ) , ℝ , < ) ∧ ( 𝐷 ‘ ℎ ) = inf ( ( 𝐷 “ ( 𝐼 ∖ { 0 } ) ) , ℝ , < ) ) → 𝑔 = ℎ ) ) |
142 |
141
|
ralrimivva |
⊢ ( ( 𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑈 ∧ 𝐼 ≠ { 0 } ) → ∀ 𝑔 ∈ ( 𝐼 ∩ 𝑀 ) ∀ ℎ ∈ ( 𝐼 ∩ 𝑀 ) ( ( ( 𝐷 ‘ 𝑔 ) = inf ( ( 𝐷 “ ( 𝐼 ∖ { 0 } ) ) , ℝ , < ) ∧ ( 𝐷 ‘ ℎ ) = inf ( ( 𝐷 “ ( 𝐼 ∖ { 0 } ) ) , ℝ , < ) ) → 𝑔 = ℎ ) ) |
143 |
|
fveqeq2 |
⊢ ( 𝑔 = ℎ → ( ( 𝐷 ‘ 𝑔 ) = inf ( ( 𝐷 “ ( 𝐼 ∖ { 0 } ) ) , ℝ , < ) ↔ ( 𝐷 ‘ ℎ ) = inf ( ( 𝐷 “ ( 𝐼 ∖ { 0 } ) ) , ℝ , < ) ) ) |
144 |
143
|
reu4 |
⊢ ( ∃! 𝑔 ∈ ( 𝐼 ∩ 𝑀 ) ( 𝐷 ‘ 𝑔 ) = inf ( ( 𝐷 “ ( 𝐼 ∖ { 0 } ) ) , ℝ , < ) ↔ ( ∃ 𝑔 ∈ ( 𝐼 ∩ 𝑀 ) ( 𝐷 ‘ 𝑔 ) = inf ( ( 𝐷 “ ( 𝐼 ∖ { 0 } ) ) , ℝ , < ) ∧ ∀ 𝑔 ∈ ( 𝐼 ∩ 𝑀 ) ∀ ℎ ∈ ( 𝐼 ∩ 𝑀 ) ( ( ( 𝐷 ‘ 𝑔 ) = inf ( ( 𝐷 “ ( 𝐼 ∖ { 0 } ) ) , ℝ , < ) ∧ ( 𝐷 ‘ ℎ ) = inf ( ( 𝐷 “ ( 𝐼 ∖ { 0 } ) ) , ℝ , < ) ) → 𝑔 = ℎ ) ) ) |
145 |
86 142 144
|
sylanbrc |
⊢ ( ( 𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑈 ∧ 𝐼 ≠ { 0 } ) → ∃! 𝑔 ∈ ( 𝐼 ∩ 𝑀 ) ( 𝐷 ‘ 𝑔 ) = inf ( ( 𝐷 “ ( 𝐼 ∖ { 0 } ) ) , ℝ , < ) ) |