Step |
Hyp |
Ref |
Expression |
1 |
|
ig1pirred.p |
⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) |
2 |
|
ig1pirred.g |
⊢ 𝐺 = ( idlGen1p ‘ 𝑅 ) |
3 |
|
ig1pirred.u |
⊢ 𝑈 = ( Base ‘ 𝑃 ) |
4 |
|
ig1pirred.r |
⊢ ( 𝜑 → 𝑅 ∈ DivRing ) |
5 |
|
ig1pirred.1 |
⊢ ( 𝜑 → 𝐼 ∈ ( LIdeal ‘ 𝑃 ) ) |
6 |
|
ig1pmindeg.d |
⊢ 𝐷 = ( deg1 ‘ 𝑅 ) |
7 |
|
ig1pmindeg.o |
⊢ 0 = ( 0g ‘ 𝑃 ) |
8 |
|
ig1pmindeg.2 |
⊢ ( 𝜑 → 𝐹 ∈ 𝐼 ) |
9 |
|
ig1pmindeg.3 |
⊢ ( 𝜑 → 𝐹 ≠ 0 ) |
10 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐼 = { 0 } ) → 𝐹 ∈ 𝐼 ) |
11 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝐼 = { 0 } ) → 𝐼 = { 0 } ) |
12 |
10 11
|
eleqtrd |
⊢ ( ( 𝜑 ∧ 𝐼 = { 0 } ) → 𝐹 ∈ { 0 } ) |
13 |
|
elsni |
⊢ ( 𝐹 ∈ { 0 } → 𝐹 = 0 ) |
14 |
12 13
|
syl |
⊢ ( ( 𝜑 ∧ 𝐼 = { 0 } ) → 𝐹 = 0 ) |
15 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐼 = { 0 } ) → 𝐹 ≠ 0 ) |
16 |
14 15
|
pm2.21ddne |
⊢ ( ( 𝜑 ∧ 𝐼 = { 0 } ) → ( 𝐷 ‘ ( 𝐺 ‘ 𝐼 ) ) ≤ ( 𝐷 ‘ 𝐹 ) ) |
17 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐼 ≠ { 0 } ) → 𝑅 ∈ DivRing ) |
18 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐼 ≠ { 0 } ) → 𝐼 ∈ ( LIdeal ‘ 𝑃 ) ) |
19 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝐼 ≠ { 0 } ) → 𝐼 ≠ { 0 } ) |
20 |
|
eqid |
⊢ ( LIdeal ‘ 𝑃 ) = ( LIdeal ‘ 𝑃 ) |
21 |
|
eqid |
⊢ ( Monic1p ‘ 𝑅 ) = ( Monic1p ‘ 𝑅 ) |
22 |
1 2 7 20 6 21
|
ig1pval3 |
⊢ ( ( 𝑅 ∈ DivRing ∧ 𝐼 ∈ ( LIdeal ‘ 𝑃 ) ∧ 𝐼 ≠ { 0 } ) → ( ( 𝐺 ‘ 𝐼 ) ∈ 𝐼 ∧ ( 𝐺 ‘ 𝐼 ) ∈ ( Monic1p ‘ 𝑅 ) ∧ ( 𝐷 ‘ ( 𝐺 ‘ 𝐼 ) ) = inf ( ( 𝐷 “ ( 𝐼 ∖ { 0 } ) ) , ℝ , < ) ) ) |
23 |
17 18 19 22
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝐼 ≠ { 0 } ) → ( ( 𝐺 ‘ 𝐼 ) ∈ 𝐼 ∧ ( 𝐺 ‘ 𝐼 ) ∈ ( Monic1p ‘ 𝑅 ) ∧ ( 𝐷 ‘ ( 𝐺 ‘ 𝐼 ) ) = inf ( ( 𝐷 “ ( 𝐼 ∖ { 0 } ) ) , ℝ , < ) ) ) |
24 |
23
|
simp3d |
⊢ ( ( 𝜑 ∧ 𝐼 ≠ { 0 } ) → ( 𝐷 ‘ ( 𝐺 ‘ 𝐼 ) ) = inf ( ( 𝐷 “ ( 𝐼 ∖ { 0 } ) ) , ℝ , < ) ) |
25 |
|
nfv |
⊢ Ⅎ 𝑓 ( 𝜑 ∧ 𝐼 ≠ { 0 } ) |
26 |
6 1 3
|
deg1xrf |
⊢ 𝐷 : 𝑈 ⟶ ℝ* |
27 |
26
|
a1i |
⊢ ( ( 𝜑 ∧ 𝐼 ≠ { 0 } ) → 𝐷 : 𝑈 ⟶ ℝ* ) |
28 |
27
|
ffund |
⊢ ( ( 𝜑 ∧ 𝐼 ≠ { 0 } ) → Fun 𝐷 ) |
29 |
17
|
drngringd |
⊢ ( ( 𝜑 ∧ 𝐼 ≠ { 0 } ) → 𝑅 ∈ Ring ) |
30 |
29
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝐼 ≠ { 0 } ) ∧ 𝑓 ∈ ( 𝐼 ∖ { 0 } ) ) → 𝑅 ∈ Ring ) |
31 |
3 20
|
lidlss |
⊢ ( 𝐼 ∈ ( LIdeal ‘ 𝑃 ) → 𝐼 ⊆ 𝑈 ) |
32 |
18 31
|
syl |
⊢ ( ( 𝜑 ∧ 𝐼 ≠ { 0 } ) → 𝐼 ⊆ 𝑈 ) |
33 |
32
|
ssdifssd |
⊢ ( ( 𝜑 ∧ 𝐼 ≠ { 0 } ) → ( 𝐼 ∖ { 0 } ) ⊆ 𝑈 ) |
34 |
33
|
sselda |
⊢ ( ( ( 𝜑 ∧ 𝐼 ≠ { 0 } ) ∧ 𝑓 ∈ ( 𝐼 ∖ { 0 } ) ) → 𝑓 ∈ 𝑈 ) |
35 |
|
eldifsni |
⊢ ( 𝑓 ∈ ( 𝐼 ∖ { 0 } ) → 𝑓 ≠ 0 ) |
36 |
35
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝐼 ≠ { 0 } ) ∧ 𝑓 ∈ ( 𝐼 ∖ { 0 } ) ) → 𝑓 ≠ 0 ) |
37 |
6 1 7 3
|
deg1nn0cl |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑓 ∈ 𝑈 ∧ 𝑓 ≠ 0 ) → ( 𝐷 ‘ 𝑓 ) ∈ ℕ0 ) |
38 |
30 34 36 37
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝐼 ≠ { 0 } ) ∧ 𝑓 ∈ ( 𝐼 ∖ { 0 } ) ) → ( 𝐷 ‘ 𝑓 ) ∈ ℕ0 ) |
39 |
|
nn0uz |
⊢ ℕ0 = ( ℤ≥ ‘ 0 ) |
40 |
38 39
|
eleqtrdi |
⊢ ( ( ( 𝜑 ∧ 𝐼 ≠ { 0 } ) ∧ 𝑓 ∈ ( 𝐼 ∖ { 0 } ) ) → ( 𝐷 ‘ 𝑓 ) ∈ ( ℤ≥ ‘ 0 ) ) |
41 |
25 28 40
|
funimassd |
⊢ ( ( 𝜑 ∧ 𝐼 ≠ { 0 } ) → ( 𝐷 “ ( 𝐼 ∖ { 0 } ) ) ⊆ ( ℤ≥ ‘ 0 ) ) |
42 |
27
|
ffnd |
⊢ ( ( 𝜑 ∧ 𝐼 ≠ { 0 } ) → 𝐷 Fn 𝑈 ) |
43 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐼 ≠ { 0 } ) → 𝐹 ∈ 𝐼 ) |
44 |
32 43
|
sseldd |
⊢ ( ( 𝜑 ∧ 𝐼 ≠ { 0 } ) → 𝐹 ∈ 𝑈 ) |
45 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐼 ≠ { 0 } ) → 𝐹 ≠ 0 ) |
46 |
|
nelsn |
⊢ ( 𝐹 ≠ 0 → ¬ 𝐹 ∈ { 0 } ) |
47 |
45 46
|
syl |
⊢ ( ( 𝜑 ∧ 𝐼 ≠ { 0 } ) → ¬ 𝐹 ∈ { 0 } ) |
48 |
43 47
|
eldifd |
⊢ ( ( 𝜑 ∧ 𝐼 ≠ { 0 } ) → 𝐹 ∈ ( 𝐼 ∖ { 0 } ) ) |
49 |
42 44 48
|
fnfvimad |
⊢ ( ( 𝜑 ∧ 𝐼 ≠ { 0 } ) → ( 𝐷 ‘ 𝐹 ) ∈ ( 𝐷 “ ( 𝐼 ∖ { 0 } ) ) ) |
50 |
|
infssuzle |
⊢ ( ( ( 𝐷 “ ( 𝐼 ∖ { 0 } ) ) ⊆ ( ℤ≥ ‘ 0 ) ∧ ( 𝐷 ‘ 𝐹 ) ∈ ( 𝐷 “ ( 𝐼 ∖ { 0 } ) ) ) → inf ( ( 𝐷 “ ( 𝐼 ∖ { 0 } ) ) , ℝ , < ) ≤ ( 𝐷 ‘ 𝐹 ) ) |
51 |
41 49 50
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝐼 ≠ { 0 } ) → inf ( ( 𝐷 “ ( 𝐼 ∖ { 0 } ) ) , ℝ , < ) ≤ ( 𝐷 ‘ 𝐹 ) ) |
52 |
24 51
|
eqbrtrd |
⊢ ( ( 𝜑 ∧ 𝐼 ≠ { 0 } ) → ( 𝐷 ‘ ( 𝐺 ‘ 𝐼 ) ) ≤ ( 𝐷 ‘ 𝐹 ) ) |
53 |
16 52
|
pm2.61dane |
⊢ ( 𝜑 → ( 𝐷 ‘ ( 𝐺 ‘ 𝐼 ) ) ≤ ( 𝐷 ‘ 𝐹 ) ) |