Metamath Proof Explorer


Theorem ig1pmindeg

Description: The polynomial ideal generator is of minimum degree. (Contributed by Thierry Arnoux, 19-Mar-2025)

Ref Expression
Hypotheses ig1pirred.p 𝑃 = ( Poly1𝑅 )
ig1pirred.g 𝐺 = ( idlGen1p𝑅 )
ig1pirred.u 𝑈 = ( Base ‘ 𝑃 )
ig1pirred.r ( 𝜑𝑅 ∈ DivRing )
ig1pirred.1 ( 𝜑𝐼 ∈ ( LIdeal ‘ 𝑃 ) )
ig1pmindeg.d 𝐷 = ( deg1𝑅 )
ig1pmindeg.o 0 = ( 0g𝑃 )
ig1pmindeg.2 ( 𝜑𝐹𝐼 )
ig1pmindeg.3 ( 𝜑𝐹0 )
Assertion ig1pmindeg ( 𝜑 → ( 𝐷 ‘ ( 𝐺𝐼 ) ) ≤ ( 𝐷𝐹 ) )

Proof

Step Hyp Ref Expression
1 ig1pirred.p 𝑃 = ( Poly1𝑅 )
2 ig1pirred.g 𝐺 = ( idlGen1p𝑅 )
3 ig1pirred.u 𝑈 = ( Base ‘ 𝑃 )
4 ig1pirred.r ( 𝜑𝑅 ∈ DivRing )
5 ig1pirred.1 ( 𝜑𝐼 ∈ ( LIdeal ‘ 𝑃 ) )
6 ig1pmindeg.d 𝐷 = ( deg1𝑅 )
7 ig1pmindeg.o 0 = ( 0g𝑃 )
8 ig1pmindeg.2 ( 𝜑𝐹𝐼 )
9 ig1pmindeg.3 ( 𝜑𝐹0 )
10 8 adantr ( ( 𝜑𝐼 = { 0 } ) → 𝐹𝐼 )
11 simpr ( ( 𝜑𝐼 = { 0 } ) → 𝐼 = { 0 } )
12 10 11 eleqtrd ( ( 𝜑𝐼 = { 0 } ) → 𝐹 ∈ { 0 } )
13 elsni ( 𝐹 ∈ { 0 } → 𝐹 = 0 )
14 12 13 syl ( ( 𝜑𝐼 = { 0 } ) → 𝐹 = 0 )
15 9 adantr ( ( 𝜑𝐼 = { 0 } ) → 𝐹0 )
16 14 15 pm2.21ddne ( ( 𝜑𝐼 = { 0 } ) → ( 𝐷 ‘ ( 𝐺𝐼 ) ) ≤ ( 𝐷𝐹 ) )
17 4 adantr ( ( 𝜑𝐼 ≠ { 0 } ) → 𝑅 ∈ DivRing )
18 5 adantr ( ( 𝜑𝐼 ≠ { 0 } ) → 𝐼 ∈ ( LIdeal ‘ 𝑃 ) )
19 simpr ( ( 𝜑𝐼 ≠ { 0 } ) → 𝐼 ≠ { 0 } )
20 eqid ( LIdeal ‘ 𝑃 ) = ( LIdeal ‘ 𝑃 )
21 eqid ( Monic1p𝑅 ) = ( Monic1p𝑅 )
22 1 2 7 20 6 21 ig1pval3 ( ( 𝑅 ∈ DivRing ∧ 𝐼 ∈ ( LIdeal ‘ 𝑃 ) ∧ 𝐼 ≠ { 0 } ) → ( ( 𝐺𝐼 ) ∈ 𝐼 ∧ ( 𝐺𝐼 ) ∈ ( Monic1p𝑅 ) ∧ ( 𝐷 ‘ ( 𝐺𝐼 ) ) = inf ( ( 𝐷 “ ( 𝐼 ∖ { 0 } ) ) , ℝ , < ) ) )
23 17 18 19 22 syl3anc ( ( 𝜑𝐼 ≠ { 0 } ) → ( ( 𝐺𝐼 ) ∈ 𝐼 ∧ ( 𝐺𝐼 ) ∈ ( Monic1p𝑅 ) ∧ ( 𝐷 ‘ ( 𝐺𝐼 ) ) = inf ( ( 𝐷 “ ( 𝐼 ∖ { 0 } ) ) , ℝ , < ) ) )
24 23 simp3d ( ( 𝜑𝐼 ≠ { 0 } ) → ( 𝐷 ‘ ( 𝐺𝐼 ) ) = inf ( ( 𝐷 “ ( 𝐼 ∖ { 0 } ) ) , ℝ , < ) )
25 nfv 𝑓 ( 𝜑𝐼 ≠ { 0 } )
26 6 1 3 deg1xrf 𝐷 : 𝑈 ⟶ ℝ*
27 26 a1i ( ( 𝜑𝐼 ≠ { 0 } ) → 𝐷 : 𝑈 ⟶ ℝ* )
28 27 ffund ( ( 𝜑𝐼 ≠ { 0 } ) → Fun 𝐷 )
29 17 drngringd ( ( 𝜑𝐼 ≠ { 0 } ) → 𝑅 ∈ Ring )
30 29 adantr ( ( ( 𝜑𝐼 ≠ { 0 } ) ∧ 𝑓 ∈ ( 𝐼 ∖ { 0 } ) ) → 𝑅 ∈ Ring )
31 3 20 lidlss ( 𝐼 ∈ ( LIdeal ‘ 𝑃 ) → 𝐼𝑈 )
32 18 31 syl ( ( 𝜑𝐼 ≠ { 0 } ) → 𝐼𝑈 )
33 32 ssdifssd ( ( 𝜑𝐼 ≠ { 0 } ) → ( 𝐼 ∖ { 0 } ) ⊆ 𝑈 )
34 33 sselda ( ( ( 𝜑𝐼 ≠ { 0 } ) ∧ 𝑓 ∈ ( 𝐼 ∖ { 0 } ) ) → 𝑓𝑈 )
35 eldifsni ( 𝑓 ∈ ( 𝐼 ∖ { 0 } ) → 𝑓0 )
36 35 adantl ( ( ( 𝜑𝐼 ≠ { 0 } ) ∧ 𝑓 ∈ ( 𝐼 ∖ { 0 } ) ) → 𝑓0 )
37 6 1 7 3 deg1nn0cl ( ( 𝑅 ∈ Ring ∧ 𝑓𝑈𝑓0 ) → ( 𝐷𝑓 ) ∈ ℕ0 )
38 30 34 36 37 syl3anc ( ( ( 𝜑𝐼 ≠ { 0 } ) ∧ 𝑓 ∈ ( 𝐼 ∖ { 0 } ) ) → ( 𝐷𝑓 ) ∈ ℕ0 )
39 nn0uz 0 = ( ℤ ‘ 0 )
40 38 39 eleqtrdi ( ( ( 𝜑𝐼 ≠ { 0 } ) ∧ 𝑓 ∈ ( 𝐼 ∖ { 0 } ) ) → ( 𝐷𝑓 ) ∈ ( ℤ ‘ 0 ) )
41 25 28 40 funimassd ( ( 𝜑𝐼 ≠ { 0 } ) → ( 𝐷 “ ( 𝐼 ∖ { 0 } ) ) ⊆ ( ℤ ‘ 0 ) )
42 27 ffnd ( ( 𝜑𝐼 ≠ { 0 } ) → 𝐷 Fn 𝑈 )
43 8 adantr ( ( 𝜑𝐼 ≠ { 0 } ) → 𝐹𝐼 )
44 32 43 sseldd ( ( 𝜑𝐼 ≠ { 0 } ) → 𝐹𝑈 )
45 9 adantr ( ( 𝜑𝐼 ≠ { 0 } ) → 𝐹0 )
46 nelsn ( 𝐹0 → ¬ 𝐹 ∈ { 0 } )
47 45 46 syl ( ( 𝜑𝐼 ≠ { 0 } ) → ¬ 𝐹 ∈ { 0 } )
48 43 47 eldifd ( ( 𝜑𝐼 ≠ { 0 } ) → 𝐹 ∈ ( 𝐼 ∖ { 0 } ) )
49 42 44 48 fnfvimad ( ( 𝜑𝐼 ≠ { 0 } ) → ( 𝐷𝐹 ) ∈ ( 𝐷 “ ( 𝐼 ∖ { 0 } ) ) )
50 infssuzle ( ( ( 𝐷 “ ( 𝐼 ∖ { 0 } ) ) ⊆ ( ℤ ‘ 0 ) ∧ ( 𝐷𝐹 ) ∈ ( 𝐷 “ ( 𝐼 ∖ { 0 } ) ) ) → inf ( ( 𝐷 “ ( 𝐼 ∖ { 0 } ) ) , ℝ , < ) ≤ ( 𝐷𝐹 ) )
51 41 49 50 syl2anc ( ( 𝜑𝐼 ≠ { 0 } ) → inf ( ( 𝐷 “ ( 𝐼 ∖ { 0 } ) ) , ℝ , < ) ≤ ( 𝐷𝐹 ) )
52 24 51 eqbrtrd ( ( 𝜑𝐼 ≠ { 0 } ) → ( 𝐷 ‘ ( 𝐺𝐼 ) ) ≤ ( 𝐷𝐹 ) )
53 16 52 pm2.61dane ( 𝜑 → ( 𝐷 ‘ ( 𝐺𝐼 ) ) ≤ ( 𝐷𝐹 ) )