Metamath Proof Explorer


Theorem ig1prsp

Description: Any ideal of polynomials over a division ring is generated by the ideal's canonical generator. (Contributed by Stefan O'Rear, 29-Mar-2015)

Ref Expression
Hypotheses ig1pval.p 𝑃 = ( Poly1𝑅 )
ig1pval.g 𝐺 = ( idlGen1p𝑅 )
ig1pcl.u 𝑈 = ( LIdeal ‘ 𝑃 )
ig1prsp.k 𝐾 = ( RSpan ‘ 𝑃 )
Assertion ig1prsp ( ( 𝑅 ∈ DivRing ∧ 𝐼𝑈 ) → 𝐼 = ( 𝐾 ‘ { ( 𝐺𝐼 ) } ) )

Proof

Step Hyp Ref Expression
1 ig1pval.p 𝑃 = ( Poly1𝑅 )
2 ig1pval.g 𝐺 = ( idlGen1p𝑅 )
3 ig1pcl.u 𝑈 = ( LIdeal ‘ 𝑃 )
4 ig1prsp.k 𝐾 = ( RSpan ‘ 𝑃 )
5 1 2 3 ig1pcl ( ( 𝑅 ∈ DivRing ∧ 𝐼𝑈 ) → ( 𝐺𝐼 ) ∈ 𝐼 )
6 eqid ( ∥r𝑃 ) = ( ∥r𝑃 )
7 1 2 3 6 ig1pdvds ( ( 𝑅 ∈ DivRing ∧ 𝐼𝑈𝑥𝐼 ) → ( 𝐺𝐼 ) ( ∥r𝑃 ) 𝑥 )
8 7 3expa ( ( ( 𝑅 ∈ DivRing ∧ 𝐼𝑈 ) ∧ 𝑥𝐼 ) → ( 𝐺𝐼 ) ( ∥r𝑃 ) 𝑥 )
9 8 ralrimiva ( ( 𝑅 ∈ DivRing ∧ 𝐼𝑈 ) → ∀ 𝑥𝐼 ( 𝐺𝐼 ) ( ∥r𝑃 ) 𝑥 )
10 drngring ( 𝑅 ∈ DivRing → 𝑅 ∈ Ring )
11 1 ply1ring ( 𝑅 ∈ Ring → 𝑃 ∈ Ring )
12 10 11 syl ( 𝑅 ∈ DivRing → 𝑃 ∈ Ring )
13 12 adantr ( ( 𝑅 ∈ DivRing ∧ 𝐼𝑈 ) → 𝑃 ∈ Ring )
14 simpr ( ( 𝑅 ∈ DivRing ∧ 𝐼𝑈 ) → 𝐼𝑈 )
15 eqid ( Base ‘ 𝑃 ) = ( Base ‘ 𝑃 )
16 15 3 lidlss ( 𝐼𝑈𝐼 ⊆ ( Base ‘ 𝑃 ) )
17 16 adantl ( ( 𝑅 ∈ DivRing ∧ 𝐼𝑈 ) → 𝐼 ⊆ ( Base ‘ 𝑃 ) )
18 17 5 sseldd ( ( 𝑅 ∈ DivRing ∧ 𝐼𝑈 ) → ( 𝐺𝐼 ) ∈ ( Base ‘ 𝑃 ) )
19 15 3 4 6 lidldvgen ( ( 𝑃 ∈ Ring ∧ 𝐼𝑈 ∧ ( 𝐺𝐼 ) ∈ ( Base ‘ 𝑃 ) ) → ( 𝐼 = ( 𝐾 ‘ { ( 𝐺𝐼 ) } ) ↔ ( ( 𝐺𝐼 ) ∈ 𝐼 ∧ ∀ 𝑥𝐼 ( 𝐺𝐼 ) ( ∥r𝑃 ) 𝑥 ) ) )
20 13 14 18 19 syl3anc ( ( 𝑅 ∈ DivRing ∧ 𝐼𝑈 ) → ( 𝐼 = ( 𝐾 ‘ { ( 𝐺𝐼 ) } ) ↔ ( ( 𝐺𝐼 ) ∈ 𝐼 ∧ ∀ 𝑥𝐼 ( 𝐺𝐼 ) ( ∥r𝑃 ) 𝑥 ) ) )
21 5 9 20 mpbir2and ( ( 𝑅 ∈ DivRing ∧ 𝐼𝑈 ) → 𝐼 = ( 𝐾 ‘ { ( 𝐺𝐼 ) } ) )