| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							ig1pval.p | 
							⊢ 𝑃  =  ( Poly1 ‘ 𝑅 )  | 
						
						
							| 2 | 
							
								
							 | 
							ig1pval.g | 
							⊢ 𝐺  =  ( idlGen1p ‘ 𝑅 )  | 
						
						
							| 3 | 
							
								
							 | 
							ig1pval.z | 
							⊢  0   =  ( 0g ‘ 𝑃 )  | 
						
						
							| 4 | 
							
								
							 | 
							ig1pval.u | 
							⊢ 𝑈  =  ( LIdeal ‘ 𝑃 )  | 
						
						
							| 5 | 
							
								
							 | 
							ig1pval.d | 
							⊢ 𝐷  =  ( deg1 ‘ 𝑅 )  | 
						
						
							| 6 | 
							
								
							 | 
							ig1pval.m | 
							⊢ 𝑀  =  ( Monic1p ‘ 𝑅 )  | 
						
						
							| 7 | 
							
								
							 | 
							elex | 
							⊢ ( 𝑅  ∈  𝑉  →  𝑅  ∈  V )  | 
						
						
							| 8 | 
							
								
							 | 
							fveq2 | 
							⊢ ( 𝑟  =  𝑅  →  ( Poly1 ‘ 𝑟 )  =  ( Poly1 ‘ 𝑅 ) )  | 
						
						
							| 9 | 
							
								8 1
							 | 
							eqtr4di | 
							⊢ ( 𝑟  =  𝑅  →  ( Poly1 ‘ 𝑟 )  =  𝑃 )  | 
						
						
							| 10 | 
							
								9
							 | 
							fveq2d | 
							⊢ ( 𝑟  =  𝑅  →  ( LIdeal ‘ ( Poly1 ‘ 𝑟 ) )  =  ( LIdeal ‘ 𝑃 ) )  | 
						
						
							| 11 | 
							
								10 4
							 | 
							eqtr4di | 
							⊢ ( 𝑟  =  𝑅  →  ( LIdeal ‘ ( Poly1 ‘ 𝑟 ) )  =  𝑈 )  | 
						
						
							| 12 | 
							
								9
							 | 
							fveq2d | 
							⊢ ( 𝑟  =  𝑅  →  ( 0g ‘ ( Poly1 ‘ 𝑟 ) )  =  ( 0g ‘ 𝑃 ) )  | 
						
						
							| 13 | 
							
								12 3
							 | 
							eqtr4di | 
							⊢ ( 𝑟  =  𝑅  →  ( 0g ‘ ( Poly1 ‘ 𝑟 ) )  =   0  )  | 
						
						
							| 14 | 
							
								13
							 | 
							sneqd | 
							⊢ ( 𝑟  =  𝑅  →  { ( 0g ‘ ( Poly1 ‘ 𝑟 ) ) }  =  {  0  } )  | 
						
						
							| 15 | 
							
								14
							 | 
							eqeq2d | 
							⊢ ( 𝑟  =  𝑅  →  ( 𝑖  =  { ( 0g ‘ ( Poly1 ‘ 𝑟 ) ) }  ↔  𝑖  =  {  0  } ) )  | 
						
						
							| 16 | 
							
								
							 | 
							fveq2 | 
							⊢ ( 𝑟  =  𝑅  →  ( Monic1p ‘ 𝑟 )  =  ( Monic1p ‘ 𝑅 ) )  | 
						
						
							| 17 | 
							
								16 6
							 | 
							eqtr4di | 
							⊢ ( 𝑟  =  𝑅  →  ( Monic1p ‘ 𝑟 )  =  𝑀 )  | 
						
						
							| 18 | 
							
								17
							 | 
							ineq2d | 
							⊢ ( 𝑟  =  𝑅  →  ( 𝑖  ∩  ( Monic1p ‘ 𝑟 ) )  =  ( 𝑖  ∩  𝑀 ) )  | 
						
						
							| 19 | 
							
								
							 | 
							fveq2 | 
							⊢ ( 𝑟  =  𝑅  →  ( deg1 ‘ 𝑟 )  =  ( deg1 ‘ 𝑅 ) )  | 
						
						
							| 20 | 
							
								19 5
							 | 
							eqtr4di | 
							⊢ ( 𝑟  =  𝑅  →  ( deg1 ‘ 𝑟 )  =  𝐷 )  | 
						
						
							| 21 | 
							
								20
							 | 
							fveq1d | 
							⊢ ( 𝑟  =  𝑅  →  ( ( deg1 ‘ 𝑟 ) ‘ 𝑔 )  =  ( 𝐷 ‘ 𝑔 ) )  | 
						
						
							| 22 | 
							
								14
							 | 
							difeq2d | 
							⊢ ( 𝑟  =  𝑅  →  ( 𝑖  ∖  { ( 0g ‘ ( Poly1 ‘ 𝑟 ) ) } )  =  ( 𝑖  ∖  {  0  } ) )  | 
						
						
							| 23 | 
							
								20 22
							 | 
							imaeq12d | 
							⊢ ( 𝑟  =  𝑅  →  ( ( deg1 ‘ 𝑟 )  “  ( 𝑖  ∖  { ( 0g ‘ ( Poly1 ‘ 𝑟 ) ) } ) )  =  ( 𝐷  “  ( 𝑖  ∖  {  0  } ) ) )  | 
						
						
							| 24 | 
							
								23
							 | 
							infeq1d | 
							⊢ ( 𝑟  =  𝑅  →  inf ( ( ( deg1 ‘ 𝑟 )  “  ( 𝑖  ∖  { ( 0g ‘ ( Poly1 ‘ 𝑟 ) ) } ) ) ,  ℝ ,   <  )  =  inf ( ( 𝐷  “  ( 𝑖  ∖  {  0  } ) ) ,  ℝ ,   <  ) )  | 
						
						
							| 25 | 
							
								21 24
							 | 
							eqeq12d | 
							⊢ ( 𝑟  =  𝑅  →  ( ( ( deg1 ‘ 𝑟 ) ‘ 𝑔 )  =  inf ( ( ( deg1 ‘ 𝑟 )  “  ( 𝑖  ∖  { ( 0g ‘ ( Poly1 ‘ 𝑟 ) ) } ) ) ,  ℝ ,   <  )  ↔  ( 𝐷 ‘ 𝑔 )  =  inf ( ( 𝐷  “  ( 𝑖  ∖  {  0  } ) ) ,  ℝ ,   <  ) ) )  | 
						
						
							| 26 | 
							
								18 25
							 | 
							riotaeqbidv | 
							⊢ ( 𝑟  =  𝑅  →  ( ℩ 𝑔  ∈  ( 𝑖  ∩  ( Monic1p ‘ 𝑟 ) ) ( ( deg1 ‘ 𝑟 ) ‘ 𝑔 )  =  inf ( ( ( deg1 ‘ 𝑟 )  “  ( 𝑖  ∖  { ( 0g ‘ ( Poly1 ‘ 𝑟 ) ) } ) ) ,  ℝ ,   <  ) )  =  ( ℩ 𝑔  ∈  ( 𝑖  ∩  𝑀 ) ( 𝐷 ‘ 𝑔 )  =  inf ( ( 𝐷  “  ( 𝑖  ∖  {  0  } ) ) ,  ℝ ,   <  ) ) )  | 
						
						
							| 27 | 
							
								15 13 26
							 | 
							ifbieq12d | 
							⊢ ( 𝑟  =  𝑅  →  if ( 𝑖  =  { ( 0g ‘ ( Poly1 ‘ 𝑟 ) ) } ,  ( 0g ‘ ( Poly1 ‘ 𝑟 ) ) ,  ( ℩ 𝑔  ∈  ( 𝑖  ∩  ( Monic1p ‘ 𝑟 ) ) ( ( deg1 ‘ 𝑟 ) ‘ 𝑔 )  =  inf ( ( ( deg1 ‘ 𝑟 )  “  ( 𝑖  ∖  { ( 0g ‘ ( Poly1 ‘ 𝑟 ) ) } ) ) ,  ℝ ,   <  ) ) )  =  if ( 𝑖  =  {  0  } ,   0  ,  ( ℩ 𝑔  ∈  ( 𝑖  ∩  𝑀 ) ( 𝐷 ‘ 𝑔 )  =  inf ( ( 𝐷  “  ( 𝑖  ∖  {  0  } ) ) ,  ℝ ,   <  ) ) ) )  | 
						
						
							| 28 | 
							
								11 27
							 | 
							mpteq12dv | 
							⊢ ( 𝑟  =  𝑅  →  ( 𝑖  ∈  ( LIdeal ‘ ( Poly1 ‘ 𝑟 ) )  ↦  if ( 𝑖  =  { ( 0g ‘ ( Poly1 ‘ 𝑟 ) ) } ,  ( 0g ‘ ( Poly1 ‘ 𝑟 ) ) ,  ( ℩ 𝑔  ∈  ( 𝑖  ∩  ( Monic1p ‘ 𝑟 ) ) ( ( deg1 ‘ 𝑟 ) ‘ 𝑔 )  =  inf ( ( ( deg1 ‘ 𝑟 )  “  ( 𝑖  ∖  { ( 0g ‘ ( Poly1 ‘ 𝑟 ) ) } ) ) ,  ℝ ,   <  ) ) ) )  =  ( 𝑖  ∈  𝑈  ↦  if ( 𝑖  =  {  0  } ,   0  ,  ( ℩ 𝑔  ∈  ( 𝑖  ∩  𝑀 ) ( 𝐷 ‘ 𝑔 )  =  inf ( ( 𝐷  “  ( 𝑖  ∖  {  0  } ) ) ,  ℝ ,   <  ) ) ) ) )  | 
						
						
							| 29 | 
							
								
							 | 
							df-ig1p | 
							⊢ idlGen1p  =  ( 𝑟  ∈  V  ↦  ( 𝑖  ∈  ( LIdeal ‘ ( Poly1 ‘ 𝑟 ) )  ↦  if ( 𝑖  =  { ( 0g ‘ ( Poly1 ‘ 𝑟 ) ) } ,  ( 0g ‘ ( Poly1 ‘ 𝑟 ) ) ,  ( ℩ 𝑔  ∈  ( 𝑖  ∩  ( Monic1p ‘ 𝑟 ) ) ( ( deg1 ‘ 𝑟 ) ‘ 𝑔 )  =  inf ( ( ( deg1 ‘ 𝑟 )  “  ( 𝑖  ∖  { ( 0g ‘ ( Poly1 ‘ 𝑟 ) ) } ) ) ,  ℝ ,   <  ) ) ) ) )  | 
						
						
							| 30 | 
							
								28 29 4
							 | 
							mptfvmpt | 
							⊢ ( 𝑅  ∈  V  →  ( idlGen1p ‘ 𝑅 )  =  ( 𝑖  ∈  𝑈  ↦  if ( 𝑖  =  {  0  } ,   0  ,  ( ℩ 𝑔  ∈  ( 𝑖  ∩  𝑀 ) ( 𝐷 ‘ 𝑔 )  =  inf ( ( 𝐷  “  ( 𝑖  ∖  {  0  } ) ) ,  ℝ ,   <  ) ) ) ) )  | 
						
						
							| 31 | 
							
								7 30
							 | 
							syl | 
							⊢ ( 𝑅  ∈  𝑉  →  ( idlGen1p ‘ 𝑅 )  =  ( 𝑖  ∈  𝑈  ↦  if ( 𝑖  =  {  0  } ,   0  ,  ( ℩ 𝑔  ∈  ( 𝑖  ∩  𝑀 ) ( 𝐷 ‘ 𝑔 )  =  inf ( ( 𝐷  “  ( 𝑖  ∖  {  0  } ) ) ,  ℝ ,   <  ) ) ) ) )  | 
						
						
							| 32 | 
							
								2 31
							 | 
							eqtrid | 
							⊢ ( 𝑅  ∈  𝑉  →  𝐺  =  ( 𝑖  ∈  𝑈  ↦  if ( 𝑖  =  {  0  } ,   0  ,  ( ℩ 𝑔  ∈  ( 𝑖  ∩  𝑀 ) ( 𝐷 ‘ 𝑔 )  =  inf ( ( 𝐷  “  ( 𝑖  ∖  {  0  } ) ) ,  ℝ ,   <  ) ) ) ) )  | 
						
						
							| 33 | 
							
								32
							 | 
							fveq1d | 
							⊢ ( 𝑅  ∈  𝑉  →  ( 𝐺 ‘ 𝐼 )  =  ( ( 𝑖  ∈  𝑈  ↦  if ( 𝑖  =  {  0  } ,   0  ,  ( ℩ 𝑔  ∈  ( 𝑖  ∩  𝑀 ) ( 𝐷 ‘ 𝑔 )  =  inf ( ( 𝐷  “  ( 𝑖  ∖  {  0  } ) ) ,  ℝ ,   <  ) ) ) ) ‘ 𝐼 ) )  | 
						
						
							| 34 | 
							
								
							 | 
							eqeq1 | 
							⊢ ( 𝑖  =  𝐼  →  ( 𝑖  =  {  0  }  ↔  𝐼  =  {  0  } ) )  | 
						
						
							| 35 | 
							
								
							 | 
							ineq1 | 
							⊢ ( 𝑖  =  𝐼  →  ( 𝑖  ∩  𝑀 )  =  ( 𝐼  ∩  𝑀 ) )  | 
						
						
							| 36 | 
							
								
							 | 
							difeq1 | 
							⊢ ( 𝑖  =  𝐼  →  ( 𝑖  ∖  {  0  } )  =  ( 𝐼  ∖  {  0  } ) )  | 
						
						
							| 37 | 
							
								36
							 | 
							imaeq2d | 
							⊢ ( 𝑖  =  𝐼  →  ( 𝐷  “  ( 𝑖  ∖  {  0  } ) )  =  ( 𝐷  “  ( 𝐼  ∖  {  0  } ) ) )  | 
						
						
							| 38 | 
							
								37
							 | 
							infeq1d | 
							⊢ ( 𝑖  =  𝐼  →  inf ( ( 𝐷  “  ( 𝑖  ∖  {  0  } ) ) ,  ℝ ,   <  )  =  inf ( ( 𝐷  “  ( 𝐼  ∖  {  0  } ) ) ,  ℝ ,   <  ) )  | 
						
						
							| 39 | 
							
								38
							 | 
							eqeq2d | 
							⊢ ( 𝑖  =  𝐼  →  ( ( 𝐷 ‘ 𝑔 )  =  inf ( ( 𝐷  “  ( 𝑖  ∖  {  0  } ) ) ,  ℝ ,   <  )  ↔  ( 𝐷 ‘ 𝑔 )  =  inf ( ( 𝐷  “  ( 𝐼  ∖  {  0  } ) ) ,  ℝ ,   <  ) ) )  | 
						
						
							| 40 | 
							
								35 39
							 | 
							riotaeqbidv | 
							⊢ ( 𝑖  =  𝐼  →  ( ℩ 𝑔  ∈  ( 𝑖  ∩  𝑀 ) ( 𝐷 ‘ 𝑔 )  =  inf ( ( 𝐷  “  ( 𝑖  ∖  {  0  } ) ) ,  ℝ ,   <  ) )  =  ( ℩ 𝑔  ∈  ( 𝐼  ∩  𝑀 ) ( 𝐷 ‘ 𝑔 )  =  inf ( ( 𝐷  “  ( 𝐼  ∖  {  0  } ) ) ,  ℝ ,   <  ) ) )  | 
						
						
							| 41 | 
							
								34 40
							 | 
							ifbieq2d | 
							⊢ ( 𝑖  =  𝐼  →  if ( 𝑖  =  {  0  } ,   0  ,  ( ℩ 𝑔  ∈  ( 𝑖  ∩  𝑀 ) ( 𝐷 ‘ 𝑔 )  =  inf ( ( 𝐷  “  ( 𝑖  ∖  {  0  } ) ) ,  ℝ ,   <  ) ) )  =  if ( 𝐼  =  {  0  } ,   0  ,  ( ℩ 𝑔  ∈  ( 𝐼  ∩  𝑀 ) ( 𝐷 ‘ 𝑔 )  =  inf ( ( 𝐷  “  ( 𝐼  ∖  {  0  } ) ) ,  ℝ ,   <  ) ) ) )  | 
						
						
							| 42 | 
							
								
							 | 
							eqid | 
							⊢ ( 𝑖  ∈  𝑈  ↦  if ( 𝑖  =  {  0  } ,   0  ,  ( ℩ 𝑔  ∈  ( 𝑖  ∩  𝑀 ) ( 𝐷 ‘ 𝑔 )  =  inf ( ( 𝐷  “  ( 𝑖  ∖  {  0  } ) ) ,  ℝ ,   <  ) ) ) )  =  ( 𝑖  ∈  𝑈  ↦  if ( 𝑖  =  {  0  } ,   0  ,  ( ℩ 𝑔  ∈  ( 𝑖  ∩  𝑀 ) ( 𝐷 ‘ 𝑔 )  =  inf ( ( 𝐷  “  ( 𝑖  ∖  {  0  } ) ) ,  ℝ ,   <  ) ) ) )  | 
						
						
							| 43 | 
							
								3
							 | 
							fvexi | 
							⊢  0   ∈  V  | 
						
						
							| 44 | 
							
								
							 | 
							riotaex | 
							⊢ ( ℩ 𝑔  ∈  ( 𝐼  ∩  𝑀 ) ( 𝐷 ‘ 𝑔 )  =  inf ( ( 𝐷  “  ( 𝐼  ∖  {  0  } ) ) ,  ℝ ,   <  ) )  ∈  V  | 
						
						
							| 45 | 
							
								43 44
							 | 
							ifex | 
							⊢ if ( 𝐼  =  {  0  } ,   0  ,  ( ℩ 𝑔  ∈  ( 𝐼  ∩  𝑀 ) ( 𝐷 ‘ 𝑔 )  =  inf ( ( 𝐷  “  ( 𝐼  ∖  {  0  } ) ) ,  ℝ ,   <  ) ) )  ∈  V  | 
						
						
							| 46 | 
							
								41 42 45
							 | 
							fvmpt | 
							⊢ ( 𝐼  ∈  𝑈  →  ( ( 𝑖  ∈  𝑈  ↦  if ( 𝑖  =  {  0  } ,   0  ,  ( ℩ 𝑔  ∈  ( 𝑖  ∩  𝑀 ) ( 𝐷 ‘ 𝑔 )  =  inf ( ( 𝐷  “  ( 𝑖  ∖  {  0  } ) ) ,  ℝ ,   <  ) ) ) ) ‘ 𝐼 )  =  if ( 𝐼  =  {  0  } ,   0  ,  ( ℩ 𝑔  ∈  ( 𝐼  ∩  𝑀 ) ( 𝐷 ‘ 𝑔 )  =  inf ( ( 𝐷  “  ( 𝐼  ∖  {  0  } ) ) ,  ℝ ,   <  ) ) ) )  | 
						
						
							| 47 | 
							
								33 46
							 | 
							sylan9eq | 
							⊢ ( ( 𝑅  ∈  𝑉  ∧  𝐼  ∈  𝑈 )  →  ( 𝐺 ‘ 𝐼 )  =  if ( 𝐼  =  {  0  } ,   0  ,  ( ℩ 𝑔  ∈  ( 𝐼  ∩  𝑀 ) ( 𝐷 ‘ 𝑔 )  =  inf ( ( 𝐷  “  ( 𝐼  ∖  {  0  } ) ) ,  ℝ ,   <  ) ) ) )  |