Step |
Hyp |
Ref |
Expression |
1 |
|
ig1pval.p |
⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) |
2 |
|
ig1pval.g |
⊢ 𝐺 = ( idlGen1p ‘ 𝑅 ) |
3 |
|
ig1pval.z |
⊢ 0 = ( 0g ‘ 𝑃 ) |
4 |
|
ig1pval.u |
⊢ 𝑈 = ( LIdeal ‘ 𝑃 ) |
5 |
|
ig1pval.d |
⊢ 𝐷 = ( deg1 ‘ 𝑅 ) |
6 |
|
ig1pval.m |
⊢ 𝑀 = ( Monic1p ‘ 𝑅 ) |
7 |
|
elex |
⊢ ( 𝑅 ∈ 𝑉 → 𝑅 ∈ V ) |
8 |
|
fveq2 |
⊢ ( 𝑟 = 𝑅 → ( Poly1 ‘ 𝑟 ) = ( Poly1 ‘ 𝑅 ) ) |
9 |
8 1
|
eqtr4di |
⊢ ( 𝑟 = 𝑅 → ( Poly1 ‘ 𝑟 ) = 𝑃 ) |
10 |
9
|
fveq2d |
⊢ ( 𝑟 = 𝑅 → ( LIdeal ‘ ( Poly1 ‘ 𝑟 ) ) = ( LIdeal ‘ 𝑃 ) ) |
11 |
10 4
|
eqtr4di |
⊢ ( 𝑟 = 𝑅 → ( LIdeal ‘ ( Poly1 ‘ 𝑟 ) ) = 𝑈 ) |
12 |
9
|
fveq2d |
⊢ ( 𝑟 = 𝑅 → ( 0g ‘ ( Poly1 ‘ 𝑟 ) ) = ( 0g ‘ 𝑃 ) ) |
13 |
12 3
|
eqtr4di |
⊢ ( 𝑟 = 𝑅 → ( 0g ‘ ( Poly1 ‘ 𝑟 ) ) = 0 ) |
14 |
13
|
sneqd |
⊢ ( 𝑟 = 𝑅 → { ( 0g ‘ ( Poly1 ‘ 𝑟 ) ) } = { 0 } ) |
15 |
14
|
eqeq2d |
⊢ ( 𝑟 = 𝑅 → ( 𝑖 = { ( 0g ‘ ( Poly1 ‘ 𝑟 ) ) } ↔ 𝑖 = { 0 } ) ) |
16 |
|
fveq2 |
⊢ ( 𝑟 = 𝑅 → ( Monic1p ‘ 𝑟 ) = ( Monic1p ‘ 𝑅 ) ) |
17 |
16 6
|
eqtr4di |
⊢ ( 𝑟 = 𝑅 → ( Monic1p ‘ 𝑟 ) = 𝑀 ) |
18 |
17
|
ineq2d |
⊢ ( 𝑟 = 𝑅 → ( 𝑖 ∩ ( Monic1p ‘ 𝑟 ) ) = ( 𝑖 ∩ 𝑀 ) ) |
19 |
|
fveq2 |
⊢ ( 𝑟 = 𝑅 → ( deg1 ‘ 𝑟 ) = ( deg1 ‘ 𝑅 ) ) |
20 |
19 5
|
eqtr4di |
⊢ ( 𝑟 = 𝑅 → ( deg1 ‘ 𝑟 ) = 𝐷 ) |
21 |
20
|
fveq1d |
⊢ ( 𝑟 = 𝑅 → ( ( deg1 ‘ 𝑟 ) ‘ 𝑔 ) = ( 𝐷 ‘ 𝑔 ) ) |
22 |
14
|
difeq2d |
⊢ ( 𝑟 = 𝑅 → ( 𝑖 ∖ { ( 0g ‘ ( Poly1 ‘ 𝑟 ) ) } ) = ( 𝑖 ∖ { 0 } ) ) |
23 |
20 22
|
imaeq12d |
⊢ ( 𝑟 = 𝑅 → ( ( deg1 ‘ 𝑟 ) “ ( 𝑖 ∖ { ( 0g ‘ ( Poly1 ‘ 𝑟 ) ) } ) ) = ( 𝐷 “ ( 𝑖 ∖ { 0 } ) ) ) |
24 |
23
|
infeq1d |
⊢ ( 𝑟 = 𝑅 → inf ( ( ( deg1 ‘ 𝑟 ) “ ( 𝑖 ∖ { ( 0g ‘ ( Poly1 ‘ 𝑟 ) ) } ) ) , ℝ , < ) = inf ( ( 𝐷 “ ( 𝑖 ∖ { 0 } ) ) , ℝ , < ) ) |
25 |
21 24
|
eqeq12d |
⊢ ( 𝑟 = 𝑅 → ( ( ( deg1 ‘ 𝑟 ) ‘ 𝑔 ) = inf ( ( ( deg1 ‘ 𝑟 ) “ ( 𝑖 ∖ { ( 0g ‘ ( Poly1 ‘ 𝑟 ) ) } ) ) , ℝ , < ) ↔ ( 𝐷 ‘ 𝑔 ) = inf ( ( 𝐷 “ ( 𝑖 ∖ { 0 } ) ) , ℝ , < ) ) ) |
26 |
18 25
|
riotaeqbidv |
⊢ ( 𝑟 = 𝑅 → ( ℩ 𝑔 ∈ ( 𝑖 ∩ ( Monic1p ‘ 𝑟 ) ) ( ( deg1 ‘ 𝑟 ) ‘ 𝑔 ) = inf ( ( ( deg1 ‘ 𝑟 ) “ ( 𝑖 ∖ { ( 0g ‘ ( Poly1 ‘ 𝑟 ) ) } ) ) , ℝ , < ) ) = ( ℩ 𝑔 ∈ ( 𝑖 ∩ 𝑀 ) ( 𝐷 ‘ 𝑔 ) = inf ( ( 𝐷 “ ( 𝑖 ∖ { 0 } ) ) , ℝ , < ) ) ) |
27 |
15 13 26
|
ifbieq12d |
⊢ ( 𝑟 = 𝑅 → if ( 𝑖 = { ( 0g ‘ ( Poly1 ‘ 𝑟 ) ) } , ( 0g ‘ ( Poly1 ‘ 𝑟 ) ) , ( ℩ 𝑔 ∈ ( 𝑖 ∩ ( Monic1p ‘ 𝑟 ) ) ( ( deg1 ‘ 𝑟 ) ‘ 𝑔 ) = inf ( ( ( deg1 ‘ 𝑟 ) “ ( 𝑖 ∖ { ( 0g ‘ ( Poly1 ‘ 𝑟 ) ) } ) ) , ℝ , < ) ) ) = if ( 𝑖 = { 0 } , 0 , ( ℩ 𝑔 ∈ ( 𝑖 ∩ 𝑀 ) ( 𝐷 ‘ 𝑔 ) = inf ( ( 𝐷 “ ( 𝑖 ∖ { 0 } ) ) , ℝ , < ) ) ) ) |
28 |
11 27
|
mpteq12dv |
⊢ ( 𝑟 = 𝑅 → ( 𝑖 ∈ ( LIdeal ‘ ( Poly1 ‘ 𝑟 ) ) ↦ if ( 𝑖 = { ( 0g ‘ ( Poly1 ‘ 𝑟 ) ) } , ( 0g ‘ ( Poly1 ‘ 𝑟 ) ) , ( ℩ 𝑔 ∈ ( 𝑖 ∩ ( Monic1p ‘ 𝑟 ) ) ( ( deg1 ‘ 𝑟 ) ‘ 𝑔 ) = inf ( ( ( deg1 ‘ 𝑟 ) “ ( 𝑖 ∖ { ( 0g ‘ ( Poly1 ‘ 𝑟 ) ) } ) ) , ℝ , < ) ) ) ) = ( 𝑖 ∈ 𝑈 ↦ if ( 𝑖 = { 0 } , 0 , ( ℩ 𝑔 ∈ ( 𝑖 ∩ 𝑀 ) ( 𝐷 ‘ 𝑔 ) = inf ( ( 𝐷 “ ( 𝑖 ∖ { 0 } ) ) , ℝ , < ) ) ) ) ) |
29 |
|
df-ig1p |
⊢ idlGen1p = ( 𝑟 ∈ V ↦ ( 𝑖 ∈ ( LIdeal ‘ ( Poly1 ‘ 𝑟 ) ) ↦ if ( 𝑖 = { ( 0g ‘ ( Poly1 ‘ 𝑟 ) ) } , ( 0g ‘ ( Poly1 ‘ 𝑟 ) ) , ( ℩ 𝑔 ∈ ( 𝑖 ∩ ( Monic1p ‘ 𝑟 ) ) ( ( deg1 ‘ 𝑟 ) ‘ 𝑔 ) = inf ( ( ( deg1 ‘ 𝑟 ) “ ( 𝑖 ∖ { ( 0g ‘ ( Poly1 ‘ 𝑟 ) ) } ) ) , ℝ , < ) ) ) ) ) |
30 |
28 29 4
|
mptfvmpt |
⊢ ( 𝑅 ∈ V → ( idlGen1p ‘ 𝑅 ) = ( 𝑖 ∈ 𝑈 ↦ if ( 𝑖 = { 0 } , 0 , ( ℩ 𝑔 ∈ ( 𝑖 ∩ 𝑀 ) ( 𝐷 ‘ 𝑔 ) = inf ( ( 𝐷 “ ( 𝑖 ∖ { 0 } ) ) , ℝ , < ) ) ) ) ) |
31 |
7 30
|
syl |
⊢ ( 𝑅 ∈ 𝑉 → ( idlGen1p ‘ 𝑅 ) = ( 𝑖 ∈ 𝑈 ↦ if ( 𝑖 = { 0 } , 0 , ( ℩ 𝑔 ∈ ( 𝑖 ∩ 𝑀 ) ( 𝐷 ‘ 𝑔 ) = inf ( ( 𝐷 “ ( 𝑖 ∖ { 0 } ) ) , ℝ , < ) ) ) ) ) |
32 |
2 31
|
eqtrid |
⊢ ( 𝑅 ∈ 𝑉 → 𝐺 = ( 𝑖 ∈ 𝑈 ↦ if ( 𝑖 = { 0 } , 0 , ( ℩ 𝑔 ∈ ( 𝑖 ∩ 𝑀 ) ( 𝐷 ‘ 𝑔 ) = inf ( ( 𝐷 “ ( 𝑖 ∖ { 0 } ) ) , ℝ , < ) ) ) ) ) |
33 |
32
|
fveq1d |
⊢ ( 𝑅 ∈ 𝑉 → ( 𝐺 ‘ 𝐼 ) = ( ( 𝑖 ∈ 𝑈 ↦ if ( 𝑖 = { 0 } , 0 , ( ℩ 𝑔 ∈ ( 𝑖 ∩ 𝑀 ) ( 𝐷 ‘ 𝑔 ) = inf ( ( 𝐷 “ ( 𝑖 ∖ { 0 } ) ) , ℝ , < ) ) ) ) ‘ 𝐼 ) ) |
34 |
|
eqeq1 |
⊢ ( 𝑖 = 𝐼 → ( 𝑖 = { 0 } ↔ 𝐼 = { 0 } ) ) |
35 |
|
ineq1 |
⊢ ( 𝑖 = 𝐼 → ( 𝑖 ∩ 𝑀 ) = ( 𝐼 ∩ 𝑀 ) ) |
36 |
|
difeq1 |
⊢ ( 𝑖 = 𝐼 → ( 𝑖 ∖ { 0 } ) = ( 𝐼 ∖ { 0 } ) ) |
37 |
36
|
imaeq2d |
⊢ ( 𝑖 = 𝐼 → ( 𝐷 “ ( 𝑖 ∖ { 0 } ) ) = ( 𝐷 “ ( 𝐼 ∖ { 0 } ) ) ) |
38 |
37
|
infeq1d |
⊢ ( 𝑖 = 𝐼 → inf ( ( 𝐷 “ ( 𝑖 ∖ { 0 } ) ) , ℝ , < ) = inf ( ( 𝐷 “ ( 𝐼 ∖ { 0 } ) ) , ℝ , < ) ) |
39 |
38
|
eqeq2d |
⊢ ( 𝑖 = 𝐼 → ( ( 𝐷 ‘ 𝑔 ) = inf ( ( 𝐷 “ ( 𝑖 ∖ { 0 } ) ) , ℝ , < ) ↔ ( 𝐷 ‘ 𝑔 ) = inf ( ( 𝐷 “ ( 𝐼 ∖ { 0 } ) ) , ℝ , < ) ) ) |
40 |
35 39
|
riotaeqbidv |
⊢ ( 𝑖 = 𝐼 → ( ℩ 𝑔 ∈ ( 𝑖 ∩ 𝑀 ) ( 𝐷 ‘ 𝑔 ) = inf ( ( 𝐷 “ ( 𝑖 ∖ { 0 } ) ) , ℝ , < ) ) = ( ℩ 𝑔 ∈ ( 𝐼 ∩ 𝑀 ) ( 𝐷 ‘ 𝑔 ) = inf ( ( 𝐷 “ ( 𝐼 ∖ { 0 } ) ) , ℝ , < ) ) ) |
41 |
34 40
|
ifbieq2d |
⊢ ( 𝑖 = 𝐼 → if ( 𝑖 = { 0 } , 0 , ( ℩ 𝑔 ∈ ( 𝑖 ∩ 𝑀 ) ( 𝐷 ‘ 𝑔 ) = inf ( ( 𝐷 “ ( 𝑖 ∖ { 0 } ) ) , ℝ , < ) ) ) = if ( 𝐼 = { 0 } , 0 , ( ℩ 𝑔 ∈ ( 𝐼 ∩ 𝑀 ) ( 𝐷 ‘ 𝑔 ) = inf ( ( 𝐷 “ ( 𝐼 ∖ { 0 } ) ) , ℝ , < ) ) ) ) |
42 |
|
eqid |
⊢ ( 𝑖 ∈ 𝑈 ↦ if ( 𝑖 = { 0 } , 0 , ( ℩ 𝑔 ∈ ( 𝑖 ∩ 𝑀 ) ( 𝐷 ‘ 𝑔 ) = inf ( ( 𝐷 “ ( 𝑖 ∖ { 0 } ) ) , ℝ , < ) ) ) ) = ( 𝑖 ∈ 𝑈 ↦ if ( 𝑖 = { 0 } , 0 , ( ℩ 𝑔 ∈ ( 𝑖 ∩ 𝑀 ) ( 𝐷 ‘ 𝑔 ) = inf ( ( 𝐷 “ ( 𝑖 ∖ { 0 } ) ) , ℝ , < ) ) ) ) |
43 |
3
|
fvexi |
⊢ 0 ∈ V |
44 |
|
riotaex |
⊢ ( ℩ 𝑔 ∈ ( 𝐼 ∩ 𝑀 ) ( 𝐷 ‘ 𝑔 ) = inf ( ( 𝐷 “ ( 𝐼 ∖ { 0 } ) ) , ℝ , < ) ) ∈ V |
45 |
43 44
|
ifex |
⊢ if ( 𝐼 = { 0 } , 0 , ( ℩ 𝑔 ∈ ( 𝐼 ∩ 𝑀 ) ( 𝐷 ‘ 𝑔 ) = inf ( ( 𝐷 “ ( 𝐼 ∖ { 0 } ) ) , ℝ , < ) ) ) ∈ V |
46 |
41 42 45
|
fvmpt |
⊢ ( 𝐼 ∈ 𝑈 → ( ( 𝑖 ∈ 𝑈 ↦ if ( 𝑖 = { 0 } , 0 , ( ℩ 𝑔 ∈ ( 𝑖 ∩ 𝑀 ) ( 𝐷 ‘ 𝑔 ) = inf ( ( 𝐷 “ ( 𝑖 ∖ { 0 } ) ) , ℝ , < ) ) ) ) ‘ 𝐼 ) = if ( 𝐼 = { 0 } , 0 , ( ℩ 𝑔 ∈ ( 𝐼 ∩ 𝑀 ) ( 𝐷 ‘ 𝑔 ) = inf ( ( 𝐷 “ ( 𝐼 ∖ { 0 } ) ) , ℝ , < ) ) ) ) |
47 |
33 46
|
sylan9eq |
⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑈 ) → ( 𝐺 ‘ 𝐼 ) = if ( 𝐼 = { 0 } , 0 , ( ℩ 𝑔 ∈ ( 𝐼 ∩ 𝑀 ) ( 𝐷 ‘ 𝑔 ) = inf ( ( 𝐷 “ ( 𝐼 ∖ { 0 } ) ) , ℝ , < ) ) ) ) |