Metamath Proof Explorer


Theorem ig1pval

Description: Substitutions for the polynomial ideal generator function. (Contributed by Stefan O'Rear, 29-Mar-2015) (Revised by AV, 25-Sep-2020)

Ref Expression
Hypotheses ig1pval.p 𝑃 = ( Poly1𝑅 )
ig1pval.g 𝐺 = ( idlGen1p𝑅 )
ig1pval.z 0 = ( 0g𝑃 )
ig1pval.u 𝑈 = ( LIdeal ‘ 𝑃 )
ig1pval.d 𝐷 = ( deg1𝑅 )
ig1pval.m 𝑀 = ( Monic1p𝑅 )
Assertion ig1pval ( ( 𝑅𝑉𝐼𝑈 ) → ( 𝐺𝐼 ) = if ( 𝐼 = { 0 } , 0 , ( 𝑔 ∈ ( 𝐼𝑀 ) ( 𝐷𝑔 ) = inf ( ( 𝐷 “ ( 𝐼 ∖ { 0 } ) ) , ℝ , < ) ) ) )

Proof

Step Hyp Ref Expression
1 ig1pval.p 𝑃 = ( Poly1𝑅 )
2 ig1pval.g 𝐺 = ( idlGen1p𝑅 )
3 ig1pval.z 0 = ( 0g𝑃 )
4 ig1pval.u 𝑈 = ( LIdeal ‘ 𝑃 )
5 ig1pval.d 𝐷 = ( deg1𝑅 )
6 ig1pval.m 𝑀 = ( Monic1p𝑅 )
7 elex ( 𝑅𝑉𝑅 ∈ V )
8 fveq2 ( 𝑟 = 𝑅 → ( Poly1𝑟 ) = ( Poly1𝑅 ) )
9 8 1 eqtr4di ( 𝑟 = 𝑅 → ( Poly1𝑟 ) = 𝑃 )
10 9 fveq2d ( 𝑟 = 𝑅 → ( LIdeal ‘ ( Poly1𝑟 ) ) = ( LIdeal ‘ 𝑃 ) )
11 10 4 eqtr4di ( 𝑟 = 𝑅 → ( LIdeal ‘ ( Poly1𝑟 ) ) = 𝑈 )
12 9 fveq2d ( 𝑟 = 𝑅 → ( 0g ‘ ( Poly1𝑟 ) ) = ( 0g𝑃 ) )
13 12 3 eqtr4di ( 𝑟 = 𝑅 → ( 0g ‘ ( Poly1𝑟 ) ) = 0 )
14 13 sneqd ( 𝑟 = 𝑅 → { ( 0g ‘ ( Poly1𝑟 ) ) } = { 0 } )
15 14 eqeq2d ( 𝑟 = 𝑅 → ( 𝑖 = { ( 0g ‘ ( Poly1𝑟 ) ) } ↔ 𝑖 = { 0 } ) )
16 fveq2 ( 𝑟 = 𝑅 → ( Monic1p𝑟 ) = ( Monic1p𝑅 ) )
17 16 6 eqtr4di ( 𝑟 = 𝑅 → ( Monic1p𝑟 ) = 𝑀 )
18 17 ineq2d ( 𝑟 = 𝑅 → ( 𝑖 ∩ ( Monic1p𝑟 ) ) = ( 𝑖𝑀 ) )
19 fveq2 ( 𝑟 = 𝑅 → ( deg1𝑟 ) = ( deg1𝑅 ) )
20 19 5 eqtr4di ( 𝑟 = 𝑅 → ( deg1𝑟 ) = 𝐷 )
21 20 fveq1d ( 𝑟 = 𝑅 → ( ( deg1𝑟 ) ‘ 𝑔 ) = ( 𝐷𝑔 ) )
22 14 difeq2d ( 𝑟 = 𝑅 → ( 𝑖 ∖ { ( 0g ‘ ( Poly1𝑟 ) ) } ) = ( 𝑖 ∖ { 0 } ) )
23 20 22 imaeq12d ( 𝑟 = 𝑅 → ( ( deg1𝑟 ) “ ( 𝑖 ∖ { ( 0g ‘ ( Poly1𝑟 ) ) } ) ) = ( 𝐷 “ ( 𝑖 ∖ { 0 } ) ) )
24 23 infeq1d ( 𝑟 = 𝑅 → inf ( ( ( deg1𝑟 ) “ ( 𝑖 ∖ { ( 0g ‘ ( Poly1𝑟 ) ) } ) ) , ℝ , < ) = inf ( ( 𝐷 “ ( 𝑖 ∖ { 0 } ) ) , ℝ , < ) )
25 21 24 eqeq12d ( 𝑟 = 𝑅 → ( ( ( deg1𝑟 ) ‘ 𝑔 ) = inf ( ( ( deg1𝑟 ) “ ( 𝑖 ∖ { ( 0g ‘ ( Poly1𝑟 ) ) } ) ) , ℝ , < ) ↔ ( 𝐷𝑔 ) = inf ( ( 𝐷 “ ( 𝑖 ∖ { 0 } ) ) , ℝ , < ) ) )
26 18 25 riotaeqbidv ( 𝑟 = 𝑅 → ( 𝑔 ∈ ( 𝑖 ∩ ( Monic1p𝑟 ) ) ( ( deg1𝑟 ) ‘ 𝑔 ) = inf ( ( ( deg1𝑟 ) “ ( 𝑖 ∖ { ( 0g ‘ ( Poly1𝑟 ) ) } ) ) , ℝ , < ) ) = ( 𝑔 ∈ ( 𝑖𝑀 ) ( 𝐷𝑔 ) = inf ( ( 𝐷 “ ( 𝑖 ∖ { 0 } ) ) , ℝ , < ) ) )
27 15 13 26 ifbieq12d ( 𝑟 = 𝑅 → if ( 𝑖 = { ( 0g ‘ ( Poly1𝑟 ) ) } , ( 0g ‘ ( Poly1𝑟 ) ) , ( 𝑔 ∈ ( 𝑖 ∩ ( Monic1p𝑟 ) ) ( ( deg1𝑟 ) ‘ 𝑔 ) = inf ( ( ( deg1𝑟 ) “ ( 𝑖 ∖ { ( 0g ‘ ( Poly1𝑟 ) ) } ) ) , ℝ , < ) ) ) = if ( 𝑖 = { 0 } , 0 , ( 𝑔 ∈ ( 𝑖𝑀 ) ( 𝐷𝑔 ) = inf ( ( 𝐷 “ ( 𝑖 ∖ { 0 } ) ) , ℝ , < ) ) ) )
28 11 27 mpteq12dv ( 𝑟 = 𝑅 → ( 𝑖 ∈ ( LIdeal ‘ ( Poly1𝑟 ) ) ↦ if ( 𝑖 = { ( 0g ‘ ( Poly1𝑟 ) ) } , ( 0g ‘ ( Poly1𝑟 ) ) , ( 𝑔 ∈ ( 𝑖 ∩ ( Monic1p𝑟 ) ) ( ( deg1𝑟 ) ‘ 𝑔 ) = inf ( ( ( deg1𝑟 ) “ ( 𝑖 ∖ { ( 0g ‘ ( Poly1𝑟 ) ) } ) ) , ℝ , < ) ) ) ) = ( 𝑖𝑈 ↦ if ( 𝑖 = { 0 } , 0 , ( 𝑔 ∈ ( 𝑖𝑀 ) ( 𝐷𝑔 ) = inf ( ( 𝐷 “ ( 𝑖 ∖ { 0 } ) ) , ℝ , < ) ) ) ) )
29 df-ig1p idlGen1p = ( 𝑟 ∈ V ↦ ( 𝑖 ∈ ( LIdeal ‘ ( Poly1𝑟 ) ) ↦ if ( 𝑖 = { ( 0g ‘ ( Poly1𝑟 ) ) } , ( 0g ‘ ( Poly1𝑟 ) ) , ( 𝑔 ∈ ( 𝑖 ∩ ( Monic1p𝑟 ) ) ( ( deg1𝑟 ) ‘ 𝑔 ) = inf ( ( ( deg1𝑟 ) “ ( 𝑖 ∖ { ( 0g ‘ ( Poly1𝑟 ) ) } ) ) , ℝ , < ) ) ) ) )
30 28 29 4 mptfvmpt ( 𝑅 ∈ V → ( idlGen1p𝑅 ) = ( 𝑖𝑈 ↦ if ( 𝑖 = { 0 } , 0 , ( 𝑔 ∈ ( 𝑖𝑀 ) ( 𝐷𝑔 ) = inf ( ( 𝐷 “ ( 𝑖 ∖ { 0 } ) ) , ℝ , < ) ) ) ) )
31 7 30 syl ( 𝑅𝑉 → ( idlGen1p𝑅 ) = ( 𝑖𝑈 ↦ if ( 𝑖 = { 0 } , 0 , ( 𝑔 ∈ ( 𝑖𝑀 ) ( 𝐷𝑔 ) = inf ( ( 𝐷 “ ( 𝑖 ∖ { 0 } ) ) , ℝ , < ) ) ) ) )
32 2 31 eqtrid ( 𝑅𝑉𝐺 = ( 𝑖𝑈 ↦ if ( 𝑖 = { 0 } , 0 , ( 𝑔 ∈ ( 𝑖𝑀 ) ( 𝐷𝑔 ) = inf ( ( 𝐷 “ ( 𝑖 ∖ { 0 } ) ) , ℝ , < ) ) ) ) )
33 32 fveq1d ( 𝑅𝑉 → ( 𝐺𝐼 ) = ( ( 𝑖𝑈 ↦ if ( 𝑖 = { 0 } , 0 , ( 𝑔 ∈ ( 𝑖𝑀 ) ( 𝐷𝑔 ) = inf ( ( 𝐷 “ ( 𝑖 ∖ { 0 } ) ) , ℝ , < ) ) ) ) ‘ 𝐼 ) )
34 eqeq1 ( 𝑖 = 𝐼 → ( 𝑖 = { 0 } ↔ 𝐼 = { 0 } ) )
35 ineq1 ( 𝑖 = 𝐼 → ( 𝑖𝑀 ) = ( 𝐼𝑀 ) )
36 difeq1 ( 𝑖 = 𝐼 → ( 𝑖 ∖ { 0 } ) = ( 𝐼 ∖ { 0 } ) )
37 36 imaeq2d ( 𝑖 = 𝐼 → ( 𝐷 “ ( 𝑖 ∖ { 0 } ) ) = ( 𝐷 “ ( 𝐼 ∖ { 0 } ) ) )
38 37 infeq1d ( 𝑖 = 𝐼 → inf ( ( 𝐷 “ ( 𝑖 ∖ { 0 } ) ) , ℝ , < ) = inf ( ( 𝐷 “ ( 𝐼 ∖ { 0 } ) ) , ℝ , < ) )
39 38 eqeq2d ( 𝑖 = 𝐼 → ( ( 𝐷𝑔 ) = inf ( ( 𝐷 “ ( 𝑖 ∖ { 0 } ) ) , ℝ , < ) ↔ ( 𝐷𝑔 ) = inf ( ( 𝐷 “ ( 𝐼 ∖ { 0 } ) ) , ℝ , < ) ) )
40 35 39 riotaeqbidv ( 𝑖 = 𝐼 → ( 𝑔 ∈ ( 𝑖𝑀 ) ( 𝐷𝑔 ) = inf ( ( 𝐷 “ ( 𝑖 ∖ { 0 } ) ) , ℝ , < ) ) = ( 𝑔 ∈ ( 𝐼𝑀 ) ( 𝐷𝑔 ) = inf ( ( 𝐷 “ ( 𝐼 ∖ { 0 } ) ) , ℝ , < ) ) )
41 34 40 ifbieq2d ( 𝑖 = 𝐼 → if ( 𝑖 = { 0 } , 0 , ( 𝑔 ∈ ( 𝑖𝑀 ) ( 𝐷𝑔 ) = inf ( ( 𝐷 “ ( 𝑖 ∖ { 0 } ) ) , ℝ , < ) ) ) = if ( 𝐼 = { 0 } , 0 , ( 𝑔 ∈ ( 𝐼𝑀 ) ( 𝐷𝑔 ) = inf ( ( 𝐷 “ ( 𝐼 ∖ { 0 } ) ) , ℝ , < ) ) ) )
42 eqid ( 𝑖𝑈 ↦ if ( 𝑖 = { 0 } , 0 , ( 𝑔 ∈ ( 𝑖𝑀 ) ( 𝐷𝑔 ) = inf ( ( 𝐷 “ ( 𝑖 ∖ { 0 } ) ) , ℝ , < ) ) ) ) = ( 𝑖𝑈 ↦ if ( 𝑖 = { 0 } , 0 , ( 𝑔 ∈ ( 𝑖𝑀 ) ( 𝐷𝑔 ) = inf ( ( 𝐷 “ ( 𝑖 ∖ { 0 } ) ) , ℝ , < ) ) ) )
43 3 fvexi 0 ∈ V
44 riotaex ( 𝑔 ∈ ( 𝐼𝑀 ) ( 𝐷𝑔 ) = inf ( ( 𝐷 “ ( 𝐼 ∖ { 0 } ) ) , ℝ , < ) ) ∈ V
45 43 44 ifex if ( 𝐼 = { 0 } , 0 , ( 𝑔 ∈ ( 𝐼𝑀 ) ( 𝐷𝑔 ) = inf ( ( 𝐷 “ ( 𝐼 ∖ { 0 } ) ) , ℝ , < ) ) ) ∈ V
46 41 42 45 fvmpt ( 𝐼𝑈 → ( ( 𝑖𝑈 ↦ if ( 𝑖 = { 0 } , 0 , ( 𝑔 ∈ ( 𝑖𝑀 ) ( 𝐷𝑔 ) = inf ( ( 𝐷 “ ( 𝑖 ∖ { 0 } ) ) , ℝ , < ) ) ) ) ‘ 𝐼 ) = if ( 𝐼 = { 0 } , 0 , ( 𝑔 ∈ ( 𝐼𝑀 ) ( 𝐷𝑔 ) = inf ( ( 𝐷 “ ( 𝐼 ∖ { 0 } ) ) , ℝ , < ) ) ) )
47 33 46 sylan9eq ( ( 𝑅𝑉𝐼𝑈 ) → ( 𝐺𝐼 ) = if ( 𝐼 = { 0 } , 0 , ( 𝑔 ∈ ( 𝐼𝑀 ) ( 𝐷𝑔 ) = inf ( ( 𝐷 “ ( 𝐼 ∖ { 0 } ) ) , ℝ , < ) ) ) )