Step |
Hyp |
Ref |
Expression |
1 |
|
ig1pval.p |
⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) |
2 |
|
ig1pval.g |
⊢ 𝐺 = ( idlGen1p ‘ 𝑅 ) |
3 |
|
ig1pval2.z |
⊢ 0 = ( 0g ‘ 𝑃 ) |
4 |
1
|
ply1ring |
⊢ ( 𝑅 ∈ Ring → 𝑃 ∈ Ring ) |
5 |
|
eqid |
⊢ ( LIdeal ‘ 𝑃 ) = ( LIdeal ‘ 𝑃 ) |
6 |
5 3
|
lidl0 |
⊢ ( 𝑃 ∈ Ring → { 0 } ∈ ( LIdeal ‘ 𝑃 ) ) |
7 |
4 6
|
syl |
⊢ ( 𝑅 ∈ Ring → { 0 } ∈ ( LIdeal ‘ 𝑃 ) ) |
8 |
|
eqid |
⊢ ( deg1 ‘ 𝑅 ) = ( deg1 ‘ 𝑅 ) |
9 |
|
eqid |
⊢ ( Monic1p ‘ 𝑅 ) = ( Monic1p ‘ 𝑅 ) |
10 |
1 2 3 5 8 9
|
ig1pval |
⊢ ( ( 𝑅 ∈ Ring ∧ { 0 } ∈ ( LIdeal ‘ 𝑃 ) ) → ( 𝐺 ‘ { 0 } ) = if ( { 0 } = { 0 } , 0 , ( ℩ 𝑔 ∈ ( { 0 } ∩ ( Monic1p ‘ 𝑅 ) ) ( ( deg1 ‘ 𝑅 ) ‘ 𝑔 ) = inf ( ( ( deg1 ‘ 𝑅 ) “ ( { 0 } ∖ { 0 } ) ) , ℝ , < ) ) ) ) |
11 |
7 10
|
mpdan |
⊢ ( 𝑅 ∈ Ring → ( 𝐺 ‘ { 0 } ) = if ( { 0 } = { 0 } , 0 , ( ℩ 𝑔 ∈ ( { 0 } ∩ ( Monic1p ‘ 𝑅 ) ) ( ( deg1 ‘ 𝑅 ) ‘ 𝑔 ) = inf ( ( ( deg1 ‘ 𝑅 ) “ ( { 0 } ∖ { 0 } ) ) , ℝ , < ) ) ) ) |
12 |
|
eqid |
⊢ { 0 } = { 0 } |
13 |
12
|
iftruei |
⊢ if ( { 0 } = { 0 } , 0 , ( ℩ 𝑔 ∈ ( { 0 } ∩ ( Monic1p ‘ 𝑅 ) ) ( ( deg1 ‘ 𝑅 ) ‘ 𝑔 ) = inf ( ( ( deg1 ‘ 𝑅 ) “ ( { 0 } ∖ { 0 } ) ) , ℝ , < ) ) ) = 0 |
14 |
11 13
|
eqtrdi |
⊢ ( 𝑅 ∈ Ring → ( 𝐺 ‘ { 0 } ) = 0 ) |