Step |
Hyp |
Ref |
Expression |
1 |
|
1eluzge0 |
⊢ 1 ∈ ( ℤ≥ ‘ 0 ) |
2 |
|
fzss1 |
⊢ ( 1 ∈ ( ℤ≥ ‘ 0 ) → ( 1 ... 𝑁 ) ⊆ ( 0 ... 𝑁 ) ) |
3 |
1 2
|
ax-mp |
⊢ ( 1 ... 𝑁 ) ⊆ ( 0 ... 𝑁 ) |
4 |
|
2z |
⊢ 2 ∈ ℤ |
5 |
4
|
a1i |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 2 ≤ 𝑁 ) → 2 ∈ ℤ ) |
6 |
|
nn0z |
⊢ ( 𝑁 ∈ ℕ0 → 𝑁 ∈ ℤ ) |
7 |
6
|
adantr |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 2 ≤ 𝑁 ) → 𝑁 ∈ ℤ ) |
8 |
|
simpr |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 2 ≤ 𝑁 ) → 2 ≤ 𝑁 ) |
9 |
|
eluz2 |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) ↔ ( 2 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 2 ≤ 𝑁 ) ) |
10 |
5 7 8 9
|
syl3anbrc |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 2 ≤ 𝑁 ) → 𝑁 ∈ ( ℤ≥ ‘ 2 ) ) |
11 |
|
ige2m1fz1 |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) → ( 𝑁 − 1 ) ∈ ( 1 ... 𝑁 ) ) |
12 |
10 11
|
syl |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 2 ≤ 𝑁 ) → ( 𝑁 − 1 ) ∈ ( 1 ... 𝑁 ) ) |
13 |
3 12
|
sselid |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 2 ≤ 𝑁 ) → ( 𝑁 − 1 ) ∈ ( 0 ... 𝑁 ) ) |