Metamath Proof Explorer


Theorem ige2m1fz

Description: Membership in a 0-based finite set of sequential integers. (Contributed by Alexander van der Vekens, 18-Jun-2018) (Proof shortened by Alexander van der Vekens, 15-Sep-2018)

Ref Expression
Assertion ige2m1fz ( ( 𝑁 ∈ ℕ0 ∧ 2 ≤ 𝑁 ) → ( 𝑁 − 1 ) ∈ ( 0 ... 𝑁 ) )

Proof

Step Hyp Ref Expression
1 1eluzge0 1 ∈ ( ℤ ‘ 0 )
2 fzss1 ( 1 ∈ ( ℤ ‘ 0 ) → ( 1 ... 𝑁 ) ⊆ ( 0 ... 𝑁 ) )
3 1 2 ax-mp ( 1 ... 𝑁 ) ⊆ ( 0 ... 𝑁 )
4 2z 2 ∈ ℤ
5 4 a1i ( ( 𝑁 ∈ ℕ0 ∧ 2 ≤ 𝑁 ) → 2 ∈ ℤ )
6 nn0z ( 𝑁 ∈ ℕ0𝑁 ∈ ℤ )
7 6 adantr ( ( 𝑁 ∈ ℕ0 ∧ 2 ≤ 𝑁 ) → 𝑁 ∈ ℤ )
8 simpr ( ( 𝑁 ∈ ℕ0 ∧ 2 ≤ 𝑁 ) → 2 ≤ 𝑁 )
9 eluz2 ( 𝑁 ∈ ( ℤ ‘ 2 ) ↔ ( 2 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 2 ≤ 𝑁 ) )
10 5 7 8 9 syl3anbrc ( ( 𝑁 ∈ ℕ0 ∧ 2 ≤ 𝑁 ) → 𝑁 ∈ ( ℤ ‘ 2 ) )
11 ige2m1fz1 ( 𝑁 ∈ ( ℤ ‘ 2 ) → ( 𝑁 − 1 ) ∈ ( 1 ... 𝑁 ) )
12 10 11 syl ( ( 𝑁 ∈ ℕ0 ∧ 2 ≤ 𝑁 ) → ( 𝑁 − 1 ) ∈ ( 1 ... 𝑁 ) )
13 3 12 sselid ( ( 𝑁 ∈ ℕ0 ∧ 2 ≤ 𝑁 ) → ( 𝑁 − 1 ) ∈ ( 0 ... 𝑁 ) )