Metamath Proof Explorer


Theorem ige2m2fzo

Description: Membership of an integer greater than 1 decreased by 2 in a half-open range of nonnegative integers. (Contributed by Alexander van der Vekens, 3-Oct-2018)

Ref Expression
Assertion ige2m2fzo ( 𝑁 ∈ ( ℤ ‘ 2 ) → ( 𝑁 − 2 ) ∈ ( 0 ..^ ( 𝑁 − 1 ) ) )

Proof

Step Hyp Ref Expression
1 eluzel2 ( 𝑁 ∈ ( ℤ ‘ 2 ) → 2 ∈ ℤ )
2 1z 1 ∈ ℤ
3 1 2 jctir ( 𝑁 ∈ ( ℤ ‘ 2 ) → ( 2 ∈ ℤ ∧ 1 ∈ ℤ ) )
4 1lt2 1 < 2
5 4 jctr ( 𝑁 ∈ ( ℤ ‘ 2 ) → ( 𝑁 ∈ ( ℤ ‘ 2 ) ∧ 1 < 2 ) )
6 eluzgtdifelfzo ( ( 2 ∈ ℤ ∧ 1 ∈ ℤ ) → ( ( 𝑁 ∈ ( ℤ ‘ 2 ) ∧ 1 < 2 ) → ( 𝑁 − 2 ) ∈ ( 0 ..^ ( 𝑁 − 1 ) ) ) )
7 3 5 6 sylc ( 𝑁 ∈ ( ℤ ‘ 2 ) → ( 𝑁 − 2 ) ∈ ( 0 ..^ ( 𝑁 − 1 ) ) )