Metamath Proof Explorer
Theorem igz
Description: _i is a gaussian integer. (Contributed by Mario Carneiro, 14-Jul-2014)
|
|
Ref |
Expression |
|
Assertion |
igz |
⊢ i ∈ ℤ[i] |
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ax-icn |
⊢ i ∈ ℂ |
| 2 |
|
rei |
⊢ ( ℜ ‘ i ) = 0 |
| 3 |
|
0z |
⊢ 0 ∈ ℤ |
| 4 |
2 3
|
eqeltri |
⊢ ( ℜ ‘ i ) ∈ ℤ |
| 5 |
|
imi |
⊢ ( ℑ ‘ i ) = 1 |
| 6 |
|
1z |
⊢ 1 ∈ ℤ |
| 7 |
5 6
|
eqeltri |
⊢ ( ℑ ‘ i ) ∈ ℤ |
| 8 |
|
elgz |
⊢ ( i ∈ ℤ[i] ↔ ( i ∈ ℂ ∧ ( ℜ ‘ i ) ∈ ℤ ∧ ( ℑ ‘ i ) ∈ ℤ ) ) |
| 9 |
1 4 7 8
|
mpbir3an |
⊢ i ∈ ℤ[i] |