Metamath Proof Explorer


Theorem iicmp

Description: The unit interval is compact. (Contributed by Jeff Madsen, 2-Sep-2009) (Revised by Mario Carneiro, 13-Jun-2014)

Ref Expression
Assertion iicmp II ∈ Comp

Proof

Step Hyp Ref Expression
1 0re 0 ∈ ℝ
2 1re 1 ∈ ℝ
3 eqid ( topGen ‘ ran (,) ) = ( topGen ‘ ran (,) )
4 dfii2 II = ( ( topGen ‘ ran (,) ) ↾t ( 0 [,] 1 ) )
5 3 4 icccmp ( ( 0 ∈ ℝ ∧ 1 ∈ ℝ ) → II ∈ Comp )
6 1 2 5 mp2an II ∈ Comp