Step |
Hyp |
Ref |
Expression |
1 |
|
2re |
⊢ 2 ∈ ℝ |
2 |
|
remulcl |
⊢ ( ( 2 ∈ ℝ ∧ 𝑋 ∈ ℝ ) → ( 2 · 𝑋 ) ∈ ℝ ) |
3 |
1 2
|
mpan |
⊢ ( 𝑋 ∈ ℝ → ( 2 · 𝑋 ) ∈ ℝ ) |
4 |
3
|
3ad2ant1 |
⊢ ( ( 𝑋 ∈ ℝ ∧ 0 ≤ 𝑋 ∧ 𝑋 ≤ ( 1 / 2 ) ) → ( 2 · 𝑋 ) ∈ ℝ ) |
5 |
|
0le2 |
⊢ 0 ≤ 2 |
6 |
|
mulge0 |
⊢ ( ( ( 2 ∈ ℝ ∧ 0 ≤ 2 ) ∧ ( 𝑋 ∈ ℝ ∧ 0 ≤ 𝑋 ) ) → 0 ≤ ( 2 · 𝑋 ) ) |
7 |
1 5 6
|
mpanl12 |
⊢ ( ( 𝑋 ∈ ℝ ∧ 0 ≤ 𝑋 ) → 0 ≤ ( 2 · 𝑋 ) ) |
8 |
7
|
3adant3 |
⊢ ( ( 𝑋 ∈ ℝ ∧ 0 ≤ 𝑋 ∧ 𝑋 ≤ ( 1 / 2 ) ) → 0 ≤ ( 2 · 𝑋 ) ) |
9 |
|
1re |
⊢ 1 ∈ ℝ |
10 |
|
2pos |
⊢ 0 < 2 |
11 |
1 10
|
pm3.2i |
⊢ ( 2 ∈ ℝ ∧ 0 < 2 ) |
12 |
|
lemuldiv2 |
⊢ ( ( 𝑋 ∈ ℝ ∧ 1 ∈ ℝ ∧ ( 2 ∈ ℝ ∧ 0 < 2 ) ) → ( ( 2 · 𝑋 ) ≤ 1 ↔ 𝑋 ≤ ( 1 / 2 ) ) ) |
13 |
9 11 12
|
mp3an23 |
⊢ ( 𝑋 ∈ ℝ → ( ( 2 · 𝑋 ) ≤ 1 ↔ 𝑋 ≤ ( 1 / 2 ) ) ) |
14 |
13
|
biimpar |
⊢ ( ( 𝑋 ∈ ℝ ∧ 𝑋 ≤ ( 1 / 2 ) ) → ( 2 · 𝑋 ) ≤ 1 ) |
15 |
14
|
3adant2 |
⊢ ( ( 𝑋 ∈ ℝ ∧ 0 ≤ 𝑋 ∧ 𝑋 ≤ ( 1 / 2 ) ) → ( 2 · 𝑋 ) ≤ 1 ) |
16 |
4 8 15
|
3jca |
⊢ ( ( 𝑋 ∈ ℝ ∧ 0 ≤ 𝑋 ∧ 𝑋 ≤ ( 1 / 2 ) ) → ( ( 2 · 𝑋 ) ∈ ℝ ∧ 0 ≤ ( 2 · 𝑋 ) ∧ ( 2 · 𝑋 ) ≤ 1 ) ) |
17 |
|
0re |
⊢ 0 ∈ ℝ |
18 |
|
halfre |
⊢ ( 1 / 2 ) ∈ ℝ |
19 |
17 18
|
elicc2i |
⊢ ( 𝑋 ∈ ( 0 [,] ( 1 / 2 ) ) ↔ ( 𝑋 ∈ ℝ ∧ 0 ≤ 𝑋 ∧ 𝑋 ≤ ( 1 / 2 ) ) ) |
20 |
17 9
|
elicc2i |
⊢ ( ( 2 · 𝑋 ) ∈ ( 0 [,] 1 ) ↔ ( ( 2 · 𝑋 ) ∈ ℝ ∧ 0 ≤ ( 2 · 𝑋 ) ∧ ( 2 · 𝑋 ) ≤ 1 ) ) |
21 |
16 19 20
|
3imtr4i |
⊢ ( 𝑋 ∈ ( 0 [,] ( 1 / 2 ) ) → ( 2 · 𝑋 ) ∈ ( 0 [,] 1 ) ) |