Description: An indexed intersection of the empty set, with a nonempty index set, is empty. (Contributed by NM, 20-Oct-2005)
Ref | Expression | ||
---|---|---|---|
Assertion | iin0 | ⊢ ( 𝐴 ≠ ∅ ↔ ∩ 𝑥 ∈ 𝐴 ∅ = ∅ ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iinconst | ⊢ ( 𝐴 ≠ ∅ → ∩ 𝑥 ∈ 𝐴 ∅ = ∅ ) | |
2 | 0ex | ⊢ ∅ ∈ V | |
3 | 2 | n0ii | ⊢ ¬ V = ∅ |
4 | 0iin | ⊢ ∩ 𝑥 ∈ ∅ ∅ = V | |
5 | 4 | eqeq1i | ⊢ ( ∩ 𝑥 ∈ ∅ ∅ = ∅ ↔ V = ∅ ) |
6 | 3 5 | mtbir | ⊢ ¬ ∩ 𝑥 ∈ ∅ ∅ = ∅ |
7 | iineq1 | ⊢ ( 𝐴 = ∅ → ∩ 𝑥 ∈ 𝐴 ∅ = ∩ 𝑥 ∈ ∅ ∅ ) | |
8 | 7 | eqeq1d | ⊢ ( 𝐴 = ∅ → ( ∩ 𝑥 ∈ 𝐴 ∅ = ∅ ↔ ∩ 𝑥 ∈ ∅ ∅ = ∅ ) ) |
9 | 6 8 | mtbiri | ⊢ ( 𝐴 = ∅ → ¬ ∩ 𝑥 ∈ 𝐴 ∅ = ∅ ) |
10 | 9 | necon2ai | ⊢ ( ∩ 𝑥 ∈ 𝐴 ∅ = ∅ → 𝐴 ≠ ∅ ) |
11 | 1 10 | impbii | ⊢ ( 𝐴 ≠ ∅ ↔ ∩ 𝑥 ∈ 𝐴 ∅ = ∅ ) |