Metamath Proof Explorer


Theorem iin0

Description: An indexed intersection of the empty set, with a nonempty index set, is empty. (Contributed by NM, 20-Oct-2005)

Ref Expression
Assertion iin0 ( 𝐴 ≠ ∅ ↔ 𝑥𝐴 ∅ = ∅ )

Proof

Step Hyp Ref Expression
1 iinconst ( 𝐴 ≠ ∅ → 𝑥𝐴 ∅ = ∅ )
2 0ex ∅ ∈ V
3 2 n0ii ¬ V = ∅
4 0iin 𝑥 ∈ ∅ ∅ = V
5 4 eqeq1i ( 𝑥 ∈ ∅ ∅ = ∅ ↔ V = ∅ )
6 3 5 mtbir ¬ 𝑥 ∈ ∅ ∅ = ∅
7 iineq1 ( 𝐴 = ∅ → 𝑥𝐴 ∅ = 𝑥 ∈ ∅ ∅ )
8 7 eqeq1d ( 𝐴 = ∅ → ( 𝑥𝐴 ∅ = ∅ ↔ 𝑥 ∈ ∅ ∅ = ∅ ) )
9 6 8 mtbiri ( 𝐴 = ∅ → ¬ 𝑥𝐴 ∅ = ∅ )
10 9 necon2ai ( 𝑥𝐴 ∅ = ∅ → 𝐴 ≠ ∅ )
11 1 10 impbii ( 𝐴 ≠ ∅ ↔ 𝑥𝐴 ∅ = ∅ )