Step |
Hyp |
Ref |
Expression |
1 |
|
nfcv |
⊢ Ⅎ 𝑦 𝐴 |
2 |
|
nfab1 |
⊢ Ⅎ 𝑦 { 𝑦 ∣ 𝜑 } |
3 |
1 2
|
nfiin |
⊢ Ⅎ 𝑦 ∩ 𝑥 ∈ 𝐴 { 𝑦 ∣ 𝜑 } |
4 |
|
nfab1 |
⊢ Ⅎ 𝑦 { 𝑦 ∣ ∀ 𝑥 ∈ 𝐴 𝜑 } |
5 |
3 4
|
cleqf |
⊢ ( ∩ 𝑥 ∈ 𝐴 { 𝑦 ∣ 𝜑 } = { 𝑦 ∣ ∀ 𝑥 ∈ 𝐴 𝜑 } ↔ ∀ 𝑦 ( 𝑦 ∈ ∩ 𝑥 ∈ 𝐴 { 𝑦 ∣ 𝜑 } ↔ 𝑦 ∈ { 𝑦 ∣ ∀ 𝑥 ∈ 𝐴 𝜑 } ) ) |
6 |
|
abid |
⊢ ( 𝑦 ∈ { 𝑦 ∣ 𝜑 } ↔ 𝜑 ) |
7 |
6
|
ralbii |
⊢ ( ∀ 𝑥 ∈ 𝐴 𝑦 ∈ { 𝑦 ∣ 𝜑 } ↔ ∀ 𝑥 ∈ 𝐴 𝜑 ) |
8 |
|
eliin |
⊢ ( 𝑦 ∈ V → ( 𝑦 ∈ ∩ 𝑥 ∈ 𝐴 { 𝑦 ∣ 𝜑 } ↔ ∀ 𝑥 ∈ 𝐴 𝑦 ∈ { 𝑦 ∣ 𝜑 } ) ) |
9 |
8
|
elv |
⊢ ( 𝑦 ∈ ∩ 𝑥 ∈ 𝐴 { 𝑦 ∣ 𝜑 } ↔ ∀ 𝑥 ∈ 𝐴 𝑦 ∈ { 𝑦 ∣ 𝜑 } ) |
10 |
|
abid |
⊢ ( 𝑦 ∈ { 𝑦 ∣ ∀ 𝑥 ∈ 𝐴 𝜑 } ↔ ∀ 𝑥 ∈ 𝐴 𝜑 ) |
11 |
7 9 10
|
3bitr4i |
⊢ ( 𝑦 ∈ ∩ 𝑥 ∈ 𝐴 { 𝑦 ∣ 𝜑 } ↔ 𝑦 ∈ { 𝑦 ∣ ∀ 𝑥 ∈ 𝐴 𝜑 } ) |
12 |
5 11
|
mpgbir |
⊢ ∩ 𝑥 ∈ 𝐴 { 𝑦 ∣ 𝜑 } = { 𝑦 ∣ ∀ 𝑥 ∈ 𝐴 𝜑 } |