Metamath Proof Explorer


Theorem iincld

Description: The indexed intersection of a collection B ( x ) of closed sets is closed. Theorem 6.1(2) of Munkres p. 93. (Contributed by NM, 5-Oct-2006) (Revised by Mario Carneiro, 3-Sep-2015)

Ref Expression
Assertion iincld ( ( 𝐴 ≠ ∅ ∧ ∀ 𝑥𝐴 𝐵 ∈ ( Clsd ‘ 𝐽 ) ) → 𝑥𝐴 𝐵 ∈ ( Clsd ‘ 𝐽 ) )

Proof

Step Hyp Ref Expression
1 eqid 𝐽 = 𝐽
2 1 cldss ( 𝐵 ∈ ( Clsd ‘ 𝐽 ) → 𝐵 𝐽 )
3 dfss4 ( 𝐵 𝐽 ↔ ( 𝐽 ∖ ( 𝐽𝐵 ) ) = 𝐵 )
4 2 3 sylib ( 𝐵 ∈ ( Clsd ‘ 𝐽 ) → ( 𝐽 ∖ ( 𝐽𝐵 ) ) = 𝐵 )
5 4 ralimi ( ∀ 𝑥𝐴 𝐵 ∈ ( Clsd ‘ 𝐽 ) → ∀ 𝑥𝐴 ( 𝐽 ∖ ( 𝐽𝐵 ) ) = 𝐵 )
6 iineq2 ( ∀ 𝑥𝐴 ( 𝐽 ∖ ( 𝐽𝐵 ) ) = 𝐵 𝑥𝐴 ( 𝐽 ∖ ( 𝐽𝐵 ) ) = 𝑥𝐴 𝐵 )
7 5 6 syl ( ∀ 𝑥𝐴 𝐵 ∈ ( Clsd ‘ 𝐽 ) → 𝑥𝐴 ( 𝐽 ∖ ( 𝐽𝐵 ) ) = 𝑥𝐴 𝐵 )
8 7 adantl ( ( 𝐴 ≠ ∅ ∧ ∀ 𝑥𝐴 𝐵 ∈ ( Clsd ‘ 𝐽 ) ) → 𝑥𝐴 ( 𝐽 ∖ ( 𝐽𝐵 ) ) = 𝑥𝐴 𝐵 )
9 iindif2 ( 𝐴 ≠ ∅ → 𝑥𝐴 ( 𝐽 ∖ ( 𝐽𝐵 ) ) = ( 𝐽 𝑥𝐴 ( 𝐽𝐵 ) ) )
10 9 adantr ( ( 𝐴 ≠ ∅ ∧ ∀ 𝑥𝐴 𝐵 ∈ ( Clsd ‘ 𝐽 ) ) → 𝑥𝐴 ( 𝐽 ∖ ( 𝐽𝐵 ) ) = ( 𝐽 𝑥𝐴 ( 𝐽𝐵 ) ) )
11 8 10 eqtr3d ( ( 𝐴 ≠ ∅ ∧ ∀ 𝑥𝐴 𝐵 ∈ ( Clsd ‘ 𝐽 ) ) → 𝑥𝐴 𝐵 = ( 𝐽 𝑥𝐴 ( 𝐽𝐵 ) ) )
12 r19.2z ( ( 𝐴 ≠ ∅ ∧ ∀ 𝑥𝐴 𝐵 ∈ ( Clsd ‘ 𝐽 ) ) → ∃ 𝑥𝐴 𝐵 ∈ ( Clsd ‘ 𝐽 ) )
13 cldrcl ( 𝐵 ∈ ( Clsd ‘ 𝐽 ) → 𝐽 ∈ Top )
14 13 rexlimivw ( ∃ 𝑥𝐴 𝐵 ∈ ( Clsd ‘ 𝐽 ) → 𝐽 ∈ Top )
15 12 14 syl ( ( 𝐴 ≠ ∅ ∧ ∀ 𝑥𝐴 𝐵 ∈ ( Clsd ‘ 𝐽 ) ) → 𝐽 ∈ Top )
16 1 cldopn ( 𝐵 ∈ ( Clsd ‘ 𝐽 ) → ( 𝐽𝐵 ) ∈ 𝐽 )
17 16 ralimi ( ∀ 𝑥𝐴 𝐵 ∈ ( Clsd ‘ 𝐽 ) → ∀ 𝑥𝐴 ( 𝐽𝐵 ) ∈ 𝐽 )
18 17 adantl ( ( 𝐴 ≠ ∅ ∧ ∀ 𝑥𝐴 𝐵 ∈ ( Clsd ‘ 𝐽 ) ) → ∀ 𝑥𝐴 ( 𝐽𝐵 ) ∈ 𝐽 )
19 iunopn ( ( 𝐽 ∈ Top ∧ ∀ 𝑥𝐴 ( 𝐽𝐵 ) ∈ 𝐽 ) → 𝑥𝐴 ( 𝐽𝐵 ) ∈ 𝐽 )
20 15 18 19 syl2anc ( ( 𝐴 ≠ ∅ ∧ ∀ 𝑥𝐴 𝐵 ∈ ( Clsd ‘ 𝐽 ) ) → 𝑥𝐴 ( 𝐽𝐵 ) ∈ 𝐽 )
21 1 opncld ( ( 𝐽 ∈ Top ∧ 𝑥𝐴 ( 𝐽𝐵 ) ∈ 𝐽 ) → ( 𝐽 𝑥𝐴 ( 𝐽𝐵 ) ) ∈ ( Clsd ‘ 𝐽 ) )
22 15 20 21 syl2anc ( ( 𝐴 ≠ ∅ ∧ ∀ 𝑥𝐴 𝐵 ∈ ( Clsd ‘ 𝐽 ) ) → ( 𝐽 𝑥𝐴 ( 𝐽𝐵 ) ) ∈ ( Clsd ‘ 𝐽 ) )
23 11 22 eqeltrd ( ( 𝐴 ≠ ∅ ∧ ∀ 𝑥𝐴 𝐵 ∈ ( Clsd ‘ 𝐽 ) ) → 𝑥𝐴 𝐵 ∈ ( Clsd ‘ 𝐽 ) )