| Step | Hyp | Ref | Expression | 
						
							| 1 |  | r19.27zv | ⊢ ( 𝐴  ≠  ∅  →  ( ∀ 𝑥  ∈  𝐴 ( 𝑦  ∈  𝐵  ∧  ¬  𝑦  ∈  𝐶 )  ↔  ( ∀ 𝑥  ∈  𝐴 𝑦  ∈  𝐵  ∧  ¬  𝑦  ∈  𝐶 ) ) ) | 
						
							| 2 |  | eldif | ⊢ ( 𝑦  ∈  ( 𝐵  ∖  𝐶 )  ↔  ( 𝑦  ∈  𝐵  ∧  ¬  𝑦  ∈  𝐶 ) ) | 
						
							| 3 | 2 | ralbii | ⊢ ( ∀ 𝑥  ∈  𝐴 𝑦  ∈  ( 𝐵  ∖  𝐶 )  ↔  ∀ 𝑥  ∈  𝐴 ( 𝑦  ∈  𝐵  ∧  ¬  𝑦  ∈  𝐶 ) ) | 
						
							| 4 |  | eliin | ⊢ ( 𝑦  ∈  V  →  ( 𝑦  ∈  ∩  𝑥  ∈  𝐴 𝐵  ↔  ∀ 𝑥  ∈  𝐴 𝑦  ∈  𝐵 ) ) | 
						
							| 5 | 4 | elv | ⊢ ( 𝑦  ∈  ∩  𝑥  ∈  𝐴 𝐵  ↔  ∀ 𝑥  ∈  𝐴 𝑦  ∈  𝐵 ) | 
						
							| 6 | 5 | anbi1i | ⊢ ( ( 𝑦  ∈  ∩  𝑥  ∈  𝐴 𝐵  ∧  ¬  𝑦  ∈  𝐶 )  ↔  ( ∀ 𝑥  ∈  𝐴 𝑦  ∈  𝐵  ∧  ¬  𝑦  ∈  𝐶 ) ) | 
						
							| 7 | 1 3 6 | 3bitr4g | ⊢ ( 𝐴  ≠  ∅  →  ( ∀ 𝑥  ∈  𝐴 𝑦  ∈  ( 𝐵  ∖  𝐶 )  ↔  ( 𝑦  ∈  ∩  𝑥  ∈  𝐴 𝐵  ∧  ¬  𝑦  ∈  𝐶 ) ) ) | 
						
							| 8 |  | eliin | ⊢ ( 𝑦  ∈  V  →  ( 𝑦  ∈  ∩  𝑥  ∈  𝐴 ( 𝐵  ∖  𝐶 )  ↔  ∀ 𝑥  ∈  𝐴 𝑦  ∈  ( 𝐵  ∖  𝐶 ) ) ) | 
						
							| 9 | 8 | elv | ⊢ ( 𝑦  ∈  ∩  𝑥  ∈  𝐴 ( 𝐵  ∖  𝐶 )  ↔  ∀ 𝑥  ∈  𝐴 𝑦  ∈  ( 𝐵  ∖  𝐶 ) ) | 
						
							| 10 |  | eldif | ⊢ ( 𝑦  ∈  ( ∩  𝑥  ∈  𝐴 𝐵  ∖  𝐶 )  ↔  ( 𝑦  ∈  ∩  𝑥  ∈  𝐴 𝐵  ∧  ¬  𝑦  ∈  𝐶 ) ) | 
						
							| 11 | 7 9 10 | 3bitr4g | ⊢ ( 𝐴  ≠  ∅  →  ( 𝑦  ∈  ∩  𝑥  ∈  𝐴 ( 𝐵  ∖  𝐶 )  ↔  𝑦  ∈  ( ∩  𝑥  ∈  𝐴 𝐵  ∖  𝐶 ) ) ) | 
						
							| 12 | 11 | eqrdv | ⊢ ( 𝐴  ≠  ∅  →  ∩  𝑥  ∈  𝐴 ( 𝐵  ∖  𝐶 )  =  ( ∩  𝑥  ∈  𝐴 𝐵  ∖  𝐶 ) ) |