Metamath Proof Explorer


Theorem iindif1

Description: Indexed intersection of class difference with the subtrahend held constant. (Contributed by Thierry Arnoux, 21-Aug-2023)

Ref Expression
Assertion iindif1 ( 𝐴 ≠ ∅ → 𝑥𝐴 ( 𝐵𝐶 ) = ( 𝑥𝐴 𝐵𝐶 ) )

Proof

Step Hyp Ref Expression
1 r19.27zv ( 𝐴 ≠ ∅ → ( ∀ 𝑥𝐴 ( 𝑦𝐵 ∧ ¬ 𝑦𝐶 ) ↔ ( ∀ 𝑥𝐴 𝑦𝐵 ∧ ¬ 𝑦𝐶 ) ) )
2 eldif ( 𝑦 ∈ ( 𝐵𝐶 ) ↔ ( 𝑦𝐵 ∧ ¬ 𝑦𝐶 ) )
3 2 ralbii ( ∀ 𝑥𝐴 𝑦 ∈ ( 𝐵𝐶 ) ↔ ∀ 𝑥𝐴 ( 𝑦𝐵 ∧ ¬ 𝑦𝐶 ) )
4 eliin ( 𝑦 ∈ V → ( 𝑦 𝑥𝐴 𝐵 ↔ ∀ 𝑥𝐴 𝑦𝐵 ) )
5 4 elv ( 𝑦 𝑥𝐴 𝐵 ↔ ∀ 𝑥𝐴 𝑦𝐵 )
6 5 anbi1i ( ( 𝑦 𝑥𝐴 𝐵 ∧ ¬ 𝑦𝐶 ) ↔ ( ∀ 𝑥𝐴 𝑦𝐵 ∧ ¬ 𝑦𝐶 ) )
7 1 3 6 3bitr4g ( 𝐴 ≠ ∅ → ( ∀ 𝑥𝐴 𝑦 ∈ ( 𝐵𝐶 ) ↔ ( 𝑦 𝑥𝐴 𝐵 ∧ ¬ 𝑦𝐶 ) ) )
8 eliin ( 𝑦 ∈ V → ( 𝑦 𝑥𝐴 ( 𝐵𝐶 ) ↔ ∀ 𝑥𝐴 𝑦 ∈ ( 𝐵𝐶 ) ) )
9 8 elv ( 𝑦 𝑥𝐴 ( 𝐵𝐶 ) ↔ ∀ 𝑥𝐴 𝑦 ∈ ( 𝐵𝐶 ) )
10 eldif ( 𝑦 ∈ ( 𝑥𝐴 𝐵𝐶 ) ↔ ( 𝑦 𝑥𝐴 𝐵 ∧ ¬ 𝑦𝐶 ) )
11 7 9 10 3bitr4g ( 𝐴 ≠ ∅ → ( 𝑦 𝑥𝐴 ( 𝐵𝐶 ) ↔ 𝑦 ∈ ( 𝑥𝐴 𝐵𝐶 ) ) )
12 11 eqrdv ( 𝐴 ≠ ∅ → 𝑥𝐴 ( 𝐵𝐶 ) = ( 𝑥𝐴 𝐵𝐶 ) )