Metamath Proof Explorer


Theorem iindif2f

Description: Indexed intersection of class difference. Generalization of half of theorem "De Morgan's laws". (Contributed by Glauco Siliprandi, 24-Jan-2025)

Ref Expression
Hypotheses iindif2f.1 𝑥 𝐴
iindif2f.2 𝑥 𝐵
Assertion iindif2f ( 𝐴 ≠ ∅ → 𝑥𝐴 ( 𝐵𝐶 ) = ( 𝐵 𝑥𝐴 𝐶 ) )

Proof

Step Hyp Ref Expression
1 iindif2f.1 𝑥 𝐴
2 iindif2f.2 𝑥 𝐵
3 2 nfcri 𝑥 𝑦𝐵
4 3 1 r19.28zf ( 𝐴 ≠ ∅ → ( ∀ 𝑥𝐴 ( 𝑦𝐵 ∧ ¬ 𝑦𝐶 ) ↔ ( 𝑦𝐵 ∧ ∀ 𝑥𝐴 ¬ 𝑦𝐶 ) ) )
5 eldif ( 𝑦 ∈ ( 𝐵𝐶 ) ↔ ( 𝑦𝐵 ∧ ¬ 𝑦𝐶 ) )
6 5 bicomi ( ( 𝑦𝐵 ∧ ¬ 𝑦𝐶 ) ↔ 𝑦 ∈ ( 𝐵𝐶 ) )
7 6 ralbii ( ∀ 𝑥𝐴 ( 𝑦𝐵 ∧ ¬ 𝑦𝐶 ) ↔ ∀ 𝑥𝐴 𝑦 ∈ ( 𝐵𝐶 ) )
8 ralnex ( ∀ 𝑥𝐴 ¬ 𝑦𝐶 ↔ ¬ ∃ 𝑥𝐴 𝑦𝐶 )
9 eliun ( 𝑦 𝑥𝐴 𝐶 ↔ ∃ 𝑥𝐴 𝑦𝐶 )
10 8 9 xchbinxr ( ∀ 𝑥𝐴 ¬ 𝑦𝐶 ↔ ¬ 𝑦 𝑥𝐴 𝐶 )
11 10 anbi2i ( ( 𝑦𝐵 ∧ ∀ 𝑥𝐴 ¬ 𝑦𝐶 ) ↔ ( 𝑦𝐵 ∧ ¬ 𝑦 𝑥𝐴 𝐶 ) )
12 4 7 11 3bitr3g ( 𝐴 ≠ ∅ → ( ∀ 𝑥𝐴 𝑦 ∈ ( 𝐵𝐶 ) ↔ ( 𝑦𝐵 ∧ ¬ 𝑦 𝑥𝐴 𝐶 ) ) )
13 eliin ( 𝑦 ∈ V → ( 𝑦 𝑥𝐴 ( 𝐵𝐶 ) ↔ ∀ 𝑥𝐴 𝑦 ∈ ( 𝐵𝐶 ) ) )
14 13 elv ( 𝑦 𝑥𝐴 ( 𝐵𝐶 ) ↔ ∀ 𝑥𝐴 𝑦 ∈ ( 𝐵𝐶 ) )
15 eldif ( 𝑦 ∈ ( 𝐵 𝑥𝐴 𝐶 ) ↔ ( 𝑦𝐵 ∧ ¬ 𝑦 𝑥𝐴 𝐶 ) )
16 12 14 15 3bitr4g ( 𝐴 ≠ ∅ → ( 𝑦 𝑥𝐴 ( 𝐵𝐶 ) ↔ 𝑦 ∈ ( 𝐵 𝑥𝐴 𝐶 ) ) )
17 16 eqrdv ( 𝐴 ≠ ∅ → 𝑥𝐴 ( 𝐵𝐶 ) = ( 𝐵 𝑥𝐴 𝐶 ) )