Step |
Hyp |
Ref |
Expression |
1 |
|
iindif2f.1 |
⊢ Ⅎ 𝑥 𝐴 |
2 |
|
iindif2f.2 |
⊢ Ⅎ 𝑥 𝐵 |
3 |
2
|
nfcri |
⊢ Ⅎ 𝑥 𝑦 ∈ 𝐵 |
4 |
3 1
|
r19.28zf |
⊢ ( 𝐴 ≠ ∅ → ( ∀ 𝑥 ∈ 𝐴 ( 𝑦 ∈ 𝐵 ∧ ¬ 𝑦 ∈ 𝐶 ) ↔ ( 𝑦 ∈ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ¬ 𝑦 ∈ 𝐶 ) ) ) |
5 |
|
eldif |
⊢ ( 𝑦 ∈ ( 𝐵 ∖ 𝐶 ) ↔ ( 𝑦 ∈ 𝐵 ∧ ¬ 𝑦 ∈ 𝐶 ) ) |
6 |
5
|
bicomi |
⊢ ( ( 𝑦 ∈ 𝐵 ∧ ¬ 𝑦 ∈ 𝐶 ) ↔ 𝑦 ∈ ( 𝐵 ∖ 𝐶 ) ) |
7 |
6
|
ralbii |
⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝑦 ∈ 𝐵 ∧ ¬ 𝑦 ∈ 𝐶 ) ↔ ∀ 𝑥 ∈ 𝐴 𝑦 ∈ ( 𝐵 ∖ 𝐶 ) ) |
8 |
|
ralnex |
⊢ ( ∀ 𝑥 ∈ 𝐴 ¬ 𝑦 ∈ 𝐶 ↔ ¬ ∃ 𝑥 ∈ 𝐴 𝑦 ∈ 𝐶 ) |
9 |
|
eliun |
⊢ ( 𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐶 ↔ ∃ 𝑥 ∈ 𝐴 𝑦 ∈ 𝐶 ) |
10 |
8 9
|
xchbinxr |
⊢ ( ∀ 𝑥 ∈ 𝐴 ¬ 𝑦 ∈ 𝐶 ↔ ¬ 𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐶 ) |
11 |
10
|
anbi2i |
⊢ ( ( 𝑦 ∈ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ¬ 𝑦 ∈ 𝐶 ) ↔ ( 𝑦 ∈ 𝐵 ∧ ¬ 𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐶 ) ) |
12 |
4 7 11
|
3bitr3g |
⊢ ( 𝐴 ≠ ∅ → ( ∀ 𝑥 ∈ 𝐴 𝑦 ∈ ( 𝐵 ∖ 𝐶 ) ↔ ( 𝑦 ∈ 𝐵 ∧ ¬ 𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐶 ) ) ) |
13 |
|
eliin |
⊢ ( 𝑦 ∈ V → ( 𝑦 ∈ ∩ 𝑥 ∈ 𝐴 ( 𝐵 ∖ 𝐶 ) ↔ ∀ 𝑥 ∈ 𝐴 𝑦 ∈ ( 𝐵 ∖ 𝐶 ) ) ) |
14 |
13
|
elv |
⊢ ( 𝑦 ∈ ∩ 𝑥 ∈ 𝐴 ( 𝐵 ∖ 𝐶 ) ↔ ∀ 𝑥 ∈ 𝐴 𝑦 ∈ ( 𝐵 ∖ 𝐶 ) ) |
15 |
|
eldif |
⊢ ( 𝑦 ∈ ( 𝐵 ∖ ∪ 𝑥 ∈ 𝐴 𝐶 ) ↔ ( 𝑦 ∈ 𝐵 ∧ ¬ 𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐶 ) ) |
16 |
12 14 15
|
3bitr4g |
⊢ ( 𝐴 ≠ ∅ → ( 𝑦 ∈ ∩ 𝑥 ∈ 𝐴 ( 𝐵 ∖ 𝐶 ) ↔ 𝑦 ∈ ( 𝐵 ∖ ∪ 𝑥 ∈ 𝐴 𝐶 ) ) ) |
17 |
16
|
eqrdv |
⊢ ( 𝐴 ≠ ∅ → ∩ 𝑥 ∈ 𝐴 ( 𝐵 ∖ 𝐶 ) = ( 𝐵 ∖ ∪ 𝑥 ∈ 𝐴 𝐶 ) ) |