Description: Equality theorem for indexed intersection. (Contributed by NM, 27-Jun-1998)
Ref | Expression | ||
---|---|---|---|
Assertion | iineq1 | ⊢ ( 𝐴 = 𝐵 → ∩ 𝑥 ∈ 𝐴 𝐶 = ∩ 𝑥 ∈ 𝐵 𝐶 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | raleq | ⊢ ( 𝐴 = 𝐵 → ( ∀ 𝑥 ∈ 𝐴 𝑦 ∈ 𝐶 ↔ ∀ 𝑥 ∈ 𝐵 𝑦 ∈ 𝐶 ) ) | |
2 | 1 | abbidv | ⊢ ( 𝐴 = 𝐵 → { 𝑦 ∣ ∀ 𝑥 ∈ 𝐴 𝑦 ∈ 𝐶 } = { 𝑦 ∣ ∀ 𝑥 ∈ 𝐵 𝑦 ∈ 𝐶 } ) |
3 | df-iin | ⊢ ∩ 𝑥 ∈ 𝐴 𝐶 = { 𝑦 ∣ ∀ 𝑥 ∈ 𝐴 𝑦 ∈ 𝐶 } | |
4 | df-iin | ⊢ ∩ 𝑥 ∈ 𝐵 𝐶 = { 𝑦 ∣ ∀ 𝑥 ∈ 𝐵 𝑦 ∈ 𝐶 } | |
5 | 2 3 4 | 3eqtr4g | ⊢ ( 𝐴 = 𝐵 → ∩ 𝑥 ∈ 𝐴 𝐶 = ∩ 𝑥 ∈ 𝐵 𝐶 ) |