Metamath Proof Explorer


Theorem iineq1

Description: Equality theorem for indexed intersection. (Contributed by NM, 27-Jun-1998)

Ref Expression
Assertion iineq1 ( 𝐴 = 𝐵 𝑥𝐴 𝐶 = 𝑥𝐵 𝐶 )

Proof

Step Hyp Ref Expression
1 raleq ( 𝐴 = 𝐵 → ( ∀ 𝑥𝐴 𝑦𝐶 ↔ ∀ 𝑥𝐵 𝑦𝐶 ) )
2 1 abbidv ( 𝐴 = 𝐵 → { 𝑦 ∣ ∀ 𝑥𝐴 𝑦𝐶 } = { 𝑦 ∣ ∀ 𝑥𝐵 𝑦𝐶 } )
3 df-iin 𝑥𝐴 𝐶 = { 𝑦 ∣ ∀ 𝑥𝐴 𝑦𝐶 }
4 df-iin 𝑥𝐵 𝐶 = { 𝑦 ∣ ∀ 𝑥𝐵 𝑦𝐶 }
5 2 3 4 3eqtr4g ( 𝐴 = 𝐵 𝑥𝐴 𝐶 = 𝑥𝐵 𝐶 )