Metamath Proof Explorer


Theorem iineq12dv

Description: Equality deduction for indexed intersection. (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypotheses iineq12dv.1 ( 𝜑𝐴 = 𝐵 )
iineq12dv.2 ( ( 𝜑𝑥𝐵 ) → 𝐶 = 𝐷 )
Assertion iineq12dv ( 𝜑 𝑥𝐴 𝐶 = 𝑥𝐵 𝐷 )

Proof

Step Hyp Ref Expression
1 iineq12dv.1 ( 𝜑𝐴 = 𝐵 )
2 iineq12dv.2 ( ( 𝜑𝑥𝐵 ) → 𝐶 = 𝐷 )
3 1 iineq1d ( 𝜑 𝑥𝐴 𝐶 = 𝑥𝐵 𝐶 )
4 2 iineq2dv ( 𝜑 𝑥𝐵 𝐶 = 𝑥𝐵 𝐷 )
5 3 4 eqtrd ( 𝜑 𝑥𝐴 𝐶 = 𝑥𝐵 𝐷 )