Description: Equality theorem for indexed intersection. (Contributed by NM, 22-Oct-2003) (Proof shortened by Andrew Salmon, 25-Jul-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | iineq2 | ⊢ ( ∀ 𝑥 ∈ 𝐴 𝐵 = 𝐶 → ∩ 𝑥 ∈ 𝐴 𝐵 = ∩ 𝑥 ∈ 𝐴 𝐶 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq2 | ⊢ ( 𝐵 = 𝐶 → ( 𝑦 ∈ 𝐵 ↔ 𝑦 ∈ 𝐶 ) ) | |
| 2 | 1 | ralimi | ⊢ ( ∀ 𝑥 ∈ 𝐴 𝐵 = 𝐶 → ∀ 𝑥 ∈ 𝐴 ( 𝑦 ∈ 𝐵 ↔ 𝑦 ∈ 𝐶 ) ) |
| 3 | ralbi | ⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝑦 ∈ 𝐵 ↔ 𝑦 ∈ 𝐶 ) → ( ∀ 𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 ↔ ∀ 𝑥 ∈ 𝐴 𝑦 ∈ 𝐶 ) ) | |
| 4 | 2 3 | syl | ⊢ ( ∀ 𝑥 ∈ 𝐴 𝐵 = 𝐶 → ( ∀ 𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 ↔ ∀ 𝑥 ∈ 𝐴 𝑦 ∈ 𝐶 ) ) |
| 5 | 4 | abbidv | ⊢ ( ∀ 𝑥 ∈ 𝐴 𝐵 = 𝐶 → { 𝑦 ∣ ∀ 𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 } = { 𝑦 ∣ ∀ 𝑥 ∈ 𝐴 𝑦 ∈ 𝐶 } ) |
| 6 | df-iin | ⊢ ∩ 𝑥 ∈ 𝐴 𝐵 = { 𝑦 ∣ ∀ 𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 } | |
| 7 | df-iin | ⊢ ∩ 𝑥 ∈ 𝐴 𝐶 = { 𝑦 ∣ ∀ 𝑥 ∈ 𝐴 𝑦 ∈ 𝐶 } | |
| 8 | 5 6 7 | 3eqtr4g | ⊢ ( ∀ 𝑥 ∈ 𝐴 𝐵 = 𝐶 → ∩ 𝑥 ∈ 𝐴 𝐵 = ∩ 𝑥 ∈ 𝐴 𝐶 ) |