Description: Equality deduction for indexed intersection. (Contributed by NM, 7-Dec-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | iineq2d.1 | ⊢ Ⅎ 𝑥 𝜑 | |
| iineq2d.2 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 = 𝐶 ) | ||
| Assertion | iineq2d | ⊢ ( 𝜑 → ∩ 𝑥 ∈ 𝐴 𝐵 = ∩ 𝑥 ∈ 𝐴 𝐶 ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | iineq2d.1 | ⊢ Ⅎ 𝑥 𝜑 | |
| 2 | iineq2d.2 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 = 𝐶 ) | |
| 3 | 2 | ex | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 → 𝐵 = 𝐶 ) ) | 
| 4 | 1 3 | ralrimi | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐴 𝐵 = 𝐶 ) | 
| 5 | iineq2 | ⊢ ( ∀ 𝑥 ∈ 𝐴 𝐵 = 𝐶 → ∩ 𝑥 ∈ 𝐴 𝐵 = ∩ 𝑥 ∈ 𝐴 𝐶 ) | |
| 6 | 4 5 | syl | ⊢ ( 𝜑 → ∩ 𝑥 ∈ 𝐴 𝐵 = ∩ 𝑥 ∈ 𝐴 𝐶 ) |