Metamath Proof Explorer


Theorem iinin1

Description: Indexed intersection of intersection. Generalization of half of theorem "Distributive laws" in Enderton p. 30. Use intiin to recover Enderton's theorem. (Contributed by Mario Carneiro, 19-Mar-2015)

Ref Expression
Assertion iinin1 ( 𝐴 ≠ ∅ → 𝑥𝐴 ( 𝐶𝐵 ) = ( 𝑥𝐴 𝐶𝐵 ) )

Proof

Step Hyp Ref Expression
1 iinin2 ( 𝐴 ≠ ∅ → 𝑥𝐴 ( 𝐵𝐶 ) = ( 𝐵 𝑥𝐴 𝐶 ) )
2 incom ( 𝐶𝐵 ) = ( 𝐵𝐶 )
3 2 a1i ( 𝑥𝐴 → ( 𝐶𝐵 ) = ( 𝐵𝐶 ) )
4 3 iineq2i 𝑥𝐴 ( 𝐶𝐵 ) = 𝑥𝐴 ( 𝐵𝐶 )
5 incom ( 𝑥𝐴 𝐶𝐵 ) = ( 𝐵 𝑥𝐴 𝐶 )
6 1 4 5 3eqtr4g ( 𝐴 ≠ ∅ → 𝑥𝐴 ( 𝐶𝐵 ) = ( 𝑥𝐴 𝐶𝐵 ) )