Description: Indexed intersection of intersection. Generalization of half of theorem "Distributive laws" in Enderton p. 30. Use intiin to recover Enderton's theorem. (Contributed by Mario Carneiro, 19-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | iinin1 | ⊢ ( 𝐴 ≠ ∅ → ∩ 𝑥 ∈ 𝐴 ( 𝐶 ∩ 𝐵 ) = ( ∩ 𝑥 ∈ 𝐴 𝐶 ∩ 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iinin2 | ⊢ ( 𝐴 ≠ ∅ → ∩ 𝑥 ∈ 𝐴 ( 𝐵 ∩ 𝐶 ) = ( 𝐵 ∩ ∩ 𝑥 ∈ 𝐴 𝐶 ) ) | |
| 2 | incom | ⊢ ( 𝐶 ∩ 𝐵 ) = ( 𝐵 ∩ 𝐶 ) | |
| 3 | 2 | a1i | ⊢ ( 𝑥 ∈ 𝐴 → ( 𝐶 ∩ 𝐵 ) = ( 𝐵 ∩ 𝐶 ) ) |
| 4 | 3 | iineq2i | ⊢ ∩ 𝑥 ∈ 𝐴 ( 𝐶 ∩ 𝐵 ) = ∩ 𝑥 ∈ 𝐴 ( 𝐵 ∩ 𝐶 ) |
| 5 | incom | ⊢ ( ∩ 𝑥 ∈ 𝐴 𝐶 ∩ 𝐵 ) = ( 𝐵 ∩ ∩ 𝑥 ∈ 𝐴 𝐶 ) | |
| 6 | 1 4 5 | 3eqtr4g | ⊢ ( 𝐴 ≠ ∅ → ∩ 𝑥 ∈ 𝐴 ( 𝐶 ∩ 𝐵 ) = ( ∩ 𝑥 ∈ 𝐴 𝐶 ∩ 𝐵 ) ) |