Step |
Hyp |
Ref |
Expression |
1 |
|
dfiin3g |
⊢ ( ∀ 𝑥 ∈ 𝐴 𝐵 ∈ On → ∩ 𝑥 ∈ 𝐴 𝐵 = ∩ ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) |
2 |
1
|
adantr |
⊢ ( ( ∀ 𝑥 ∈ 𝐴 𝐵 ∈ On ∧ 𝐴 ≠ ∅ ) → ∩ 𝑥 ∈ 𝐴 𝐵 = ∩ ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) |
3 |
|
eqid |
⊢ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) = ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) |
4 |
3
|
rnmptss |
⊢ ( ∀ 𝑥 ∈ 𝐴 𝐵 ∈ On → ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ⊆ On ) |
5 |
|
dm0rn0 |
⊢ ( dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) = ∅ ↔ ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) = ∅ ) |
6 |
|
dmmptg |
⊢ ( ∀ 𝑥 ∈ 𝐴 𝐵 ∈ On → dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) = 𝐴 ) |
7 |
6
|
eqeq1d |
⊢ ( ∀ 𝑥 ∈ 𝐴 𝐵 ∈ On → ( dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) = ∅ ↔ 𝐴 = ∅ ) ) |
8 |
5 7
|
bitr3id |
⊢ ( ∀ 𝑥 ∈ 𝐴 𝐵 ∈ On → ( ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) = ∅ ↔ 𝐴 = ∅ ) ) |
9 |
8
|
necon3bid |
⊢ ( ∀ 𝑥 ∈ 𝐴 𝐵 ∈ On → ( ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ≠ ∅ ↔ 𝐴 ≠ ∅ ) ) |
10 |
9
|
biimpar |
⊢ ( ( ∀ 𝑥 ∈ 𝐴 𝐵 ∈ On ∧ 𝐴 ≠ ∅ ) → ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ≠ ∅ ) |
11 |
|
oninton |
⊢ ( ( ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ⊆ On ∧ ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ≠ ∅ ) → ∩ ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ On ) |
12 |
4 10 11
|
syl2an2r |
⊢ ( ( ∀ 𝑥 ∈ 𝐴 𝐵 ∈ On ∧ 𝐴 ≠ ∅ ) → ∩ ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ On ) |
13 |
2 12
|
eqeltrd |
⊢ ( ( ∀ 𝑥 ∈ 𝐴 𝐵 ∈ On ∧ 𝐴 ≠ ∅ ) → ∩ 𝑥 ∈ 𝐴 𝐵 ∈ On ) |