| Step | Hyp | Ref | Expression | 
						
							| 1 |  | simpr3 | ⊢ ( ( 𝐽  ∈  Top  ∧  ( 𝐴  ∈  Fin  ∧  𝐴  ≠  ∅  ∧  ∀ 𝑥  ∈  𝐴 𝐵  ∈  𝐽 ) )  →  ∀ 𝑥  ∈  𝐴 𝐵  ∈  𝐽 ) | 
						
							| 2 |  | dfiin2g | ⊢ ( ∀ 𝑥  ∈  𝐴 𝐵  ∈  𝐽  →  ∩  𝑥  ∈  𝐴 𝐵  =  ∩  { 𝑦  ∣  ∃ 𝑥  ∈  𝐴 𝑦  =  𝐵 } ) | 
						
							| 3 | 1 2 | syl | ⊢ ( ( 𝐽  ∈  Top  ∧  ( 𝐴  ∈  Fin  ∧  𝐴  ≠  ∅  ∧  ∀ 𝑥  ∈  𝐴 𝐵  ∈  𝐽 ) )  →  ∩  𝑥  ∈  𝐴 𝐵  =  ∩  { 𝑦  ∣  ∃ 𝑥  ∈  𝐴 𝑦  =  𝐵 } ) | 
						
							| 4 |  | simpl | ⊢ ( ( 𝐽  ∈  Top  ∧  ( 𝐴  ∈  Fin  ∧  𝐴  ≠  ∅  ∧  ∀ 𝑥  ∈  𝐴 𝐵  ∈  𝐽 ) )  →  𝐽  ∈  Top ) | 
						
							| 5 |  | eqid | ⊢ ( 𝑥  ∈  𝐴  ↦  𝐵 )  =  ( 𝑥  ∈  𝐴  ↦  𝐵 ) | 
						
							| 6 | 5 | rnmpt | ⊢ ran  ( 𝑥  ∈  𝐴  ↦  𝐵 )  =  { 𝑦  ∣  ∃ 𝑥  ∈  𝐴 𝑦  =  𝐵 } | 
						
							| 7 | 5 | fmpt | ⊢ ( ∀ 𝑥  ∈  𝐴 𝐵  ∈  𝐽  ↔  ( 𝑥  ∈  𝐴  ↦  𝐵 ) : 𝐴 ⟶ 𝐽 ) | 
						
							| 8 | 1 7 | sylib | ⊢ ( ( 𝐽  ∈  Top  ∧  ( 𝐴  ∈  Fin  ∧  𝐴  ≠  ∅  ∧  ∀ 𝑥  ∈  𝐴 𝐵  ∈  𝐽 ) )  →  ( 𝑥  ∈  𝐴  ↦  𝐵 ) : 𝐴 ⟶ 𝐽 ) | 
						
							| 9 | 8 | frnd | ⊢ ( ( 𝐽  ∈  Top  ∧  ( 𝐴  ∈  Fin  ∧  𝐴  ≠  ∅  ∧  ∀ 𝑥  ∈  𝐴 𝐵  ∈  𝐽 ) )  →  ran  ( 𝑥  ∈  𝐴  ↦  𝐵 )  ⊆  𝐽 ) | 
						
							| 10 | 6 9 | eqsstrrid | ⊢ ( ( 𝐽  ∈  Top  ∧  ( 𝐴  ∈  Fin  ∧  𝐴  ≠  ∅  ∧  ∀ 𝑥  ∈  𝐴 𝐵  ∈  𝐽 ) )  →  { 𝑦  ∣  ∃ 𝑥  ∈  𝐴 𝑦  =  𝐵 }  ⊆  𝐽 ) | 
						
							| 11 | 8 | fdmd | ⊢ ( ( 𝐽  ∈  Top  ∧  ( 𝐴  ∈  Fin  ∧  𝐴  ≠  ∅  ∧  ∀ 𝑥  ∈  𝐴 𝐵  ∈  𝐽 ) )  →  dom  ( 𝑥  ∈  𝐴  ↦  𝐵 )  =  𝐴 ) | 
						
							| 12 |  | simpr2 | ⊢ ( ( 𝐽  ∈  Top  ∧  ( 𝐴  ∈  Fin  ∧  𝐴  ≠  ∅  ∧  ∀ 𝑥  ∈  𝐴 𝐵  ∈  𝐽 ) )  →  𝐴  ≠  ∅ ) | 
						
							| 13 | 11 12 | eqnetrd | ⊢ ( ( 𝐽  ∈  Top  ∧  ( 𝐴  ∈  Fin  ∧  𝐴  ≠  ∅  ∧  ∀ 𝑥  ∈  𝐴 𝐵  ∈  𝐽 ) )  →  dom  ( 𝑥  ∈  𝐴  ↦  𝐵 )  ≠  ∅ ) | 
						
							| 14 |  | dm0rn0 | ⊢ ( dom  ( 𝑥  ∈  𝐴  ↦  𝐵 )  =  ∅  ↔  ran  ( 𝑥  ∈  𝐴  ↦  𝐵 )  =  ∅ ) | 
						
							| 15 | 6 | eqeq1i | ⊢ ( ran  ( 𝑥  ∈  𝐴  ↦  𝐵 )  =  ∅  ↔  { 𝑦  ∣  ∃ 𝑥  ∈  𝐴 𝑦  =  𝐵 }  =  ∅ ) | 
						
							| 16 | 14 15 | bitri | ⊢ ( dom  ( 𝑥  ∈  𝐴  ↦  𝐵 )  =  ∅  ↔  { 𝑦  ∣  ∃ 𝑥  ∈  𝐴 𝑦  =  𝐵 }  =  ∅ ) | 
						
							| 17 | 16 | necon3bii | ⊢ ( dom  ( 𝑥  ∈  𝐴  ↦  𝐵 )  ≠  ∅  ↔  { 𝑦  ∣  ∃ 𝑥  ∈  𝐴 𝑦  =  𝐵 }  ≠  ∅ ) | 
						
							| 18 | 13 17 | sylib | ⊢ ( ( 𝐽  ∈  Top  ∧  ( 𝐴  ∈  Fin  ∧  𝐴  ≠  ∅  ∧  ∀ 𝑥  ∈  𝐴 𝐵  ∈  𝐽 ) )  →  { 𝑦  ∣  ∃ 𝑥  ∈  𝐴 𝑦  =  𝐵 }  ≠  ∅ ) | 
						
							| 19 |  | simpr1 | ⊢ ( ( 𝐽  ∈  Top  ∧  ( 𝐴  ∈  Fin  ∧  𝐴  ≠  ∅  ∧  ∀ 𝑥  ∈  𝐴 𝐵  ∈  𝐽 ) )  →  𝐴  ∈  Fin ) | 
						
							| 20 |  | abrexfi | ⊢ ( 𝐴  ∈  Fin  →  { 𝑦  ∣  ∃ 𝑥  ∈  𝐴 𝑦  =  𝐵 }  ∈  Fin ) | 
						
							| 21 | 19 20 | syl | ⊢ ( ( 𝐽  ∈  Top  ∧  ( 𝐴  ∈  Fin  ∧  𝐴  ≠  ∅  ∧  ∀ 𝑥  ∈  𝐴 𝐵  ∈  𝐽 ) )  →  { 𝑦  ∣  ∃ 𝑥  ∈  𝐴 𝑦  =  𝐵 }  ∈  Fin ) | 
						
							| 22 |  | fiinopn | ⊢ ( 𝐽  ∈  Top  →  ( ( { 𝑦  ∣  ∃ 𝑥  ∈  𝐴 𝑦  =  𝐵 }  ⊆  𝐽  ∧  { 𝑦  ∣  ∃ 𝑥  ∈  𝐴 𝑦  =  𝐵 }  ≠  ∅  ∧  { 𝑦  ∣  ∃ 𝑥  ∈  𝐴 𝑦  =  𝐵 }  ∈  Fin )  →  ∩  { 𝑦  ∣  ∃ 𝑥  ∈  𝐴 𝑦  =  𝐵 }  ∈  𝐽 ) ) | 
						
							| 23 | 22 | imp | ⊢ ( ( 𝐽  ∈  Top  ∧  ( { 𝑦  ∣  ∃ 𝑥  ∈  𝐴 𝑦  =  𝐵 }  ⊆  𝐽  ∧  { 𝑦  ∣  ∃ 𝑥  ∈  𝐴 𝑦  =  𝐵 }  ≠  ∅  ∧  { 𝑦  ∣  ∃ 𝑥  ∈  𝐴 𝑦  =  𝐵 }  ∈  Fin ) )  →  ∩  { 𝑦  ∣  ∃ 𝑥  ∈  𝐴 𝑦  =  𝐵 }  ∈  𝐽 ) | 
						
							| 24 | 4 10 18 21 23 | syl13anc | ⊢ ( ( 𝐽  ∈  Top  ∧  ( 𝐴  ∈  Fin  ∧  𝐴  ≠  ∅  ∧  ∀ 𝑥  ∈  𝐴 𝐵  ∈  𝐽 ) )  →  ∩  { 𝑦  ∣  ∃ 𝑥  ∈  𝐴 𝑦  =  𝐵 }  ∈  𝐽 ) | 
						
							| 25 | 3 24 | eqeltrd | ⊢ ( ( 𝐽  ∈  Top  ∧  ( 𝐴  ∈  Fin  ∧  𝐴  ≠  ∅  ∧  ∀ 𝑥  ∈  𝐴 𝐵  ∈  𝐽 ) )  →  ∩  𝑥  ∈  𝐴 𝐵  ∈  𝐽 ) |