Step |
Hyp |
Ref |
Expression |
1 |
|
simpr3 |
⊢ ( ( 𝐽 ∈ Top ∧ ( 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝐽 ) ) → ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝐽 ) |
2 |
|
dfiin2g |
⊢ ( ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝐽 → ∩ 𝑥 ∈ 𝐴 𝐵 = ∩ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = 𝐵 } ) |
3 |
1 2
|
syl |
⊢ ( ( 𝐽 ∈ Top ∧ ( 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝐽 ) ) → ∩ 𝑥 ∈ 𝐴 𝐵 = ∩ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = 𝐵 } ) |
4 |
|
simpl |
⊢ ( ( 𝐽 ∈ Top ∧ ( 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝐽 ) ) → 𝐽 ∈ Top ) |
5 |
|
eqid |
⊢ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) = ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) |
6 |
5
|
rnmpt |
⊢ ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) = { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = 𝐵 } |
7 |
5
|
fmpt |
⊢ ( ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝐽 ↔ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) : 𝐴 ⟶ 𝐽 ) |
8 |
1 7
|
sylib |
⊢ ( ( 𝐽 ∈ Top ∧ ( 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝐽 ) ) → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) : 𝐴 ⟶ 𝐽 ) |
9 |
8
|
frnd |
⊢ ( ( 𝐽 ∈ Top ∧ ( 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝐽 ) ) → ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ⊆ 𝐽 ) |
10 |
6 9
|
eqsstrrid |
⊢ ( ( 𝐽 ∈ Top ∧ ( 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝐽 ) ) → { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = 𝐵 } ⊆ 𝐽 ) |
11 |
8
|
fdmd |
⊢ ( ( 𝐽 ∈ Top ∧ ( 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝐽 ) ) → dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) = 𝐴 ) |
12 |
|
simpr2 |
⊢ ( ( 𝐽 ∈ Top ∧ ( 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝐽 ) ) → 𝐴 ≠ ∅ ) |
13 |
11 12
|
eqnetrd |
⊢ ( ( 𝐽 ∈ Top ∧ ( 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝐽 ) ) → dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ≠ ∅ ) |
14 |
|
dm0rn0 |
⊢ ( dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) = ∅ ↔ ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) = ∅ ) |
15 |
6
|
eqeq1i |
⊢ ( ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) = ∅ ↔ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = 𝐵 } = ∅ ) |
16 |
14 15
|
bitri |
⊢ ( dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) = ∅ ↔ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = 𝐵 } = ∅ ) |
17 |
16
|
necon3bii |
⊢ ( dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ≠ ∅ ↔ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = 𝐵 } ≠ ∅ ) |
18 |
13 17
|
sylib |
⊢ ( ( 𝐽 ∈ Top ∧ ( 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝐽 ) ) → { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = 𝐵 } ≠ ∅ ) |
19 |
|
simpr1 |
⊢ ( ( 𝐽 ∈ Top ∧ ( 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝐽 ) ) → 𝐴 ∈ Fin ) |
20 |
|
abrexfi |
⊢ ( 𝐴 ∈ Fin → { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = 𝐵 } ∈ Fin ) |
21 |
19 20
|
syl |
⊢ ( ( 𝐽 ∈ Top ∧ ( 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝐽 ) ) → { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = 𝐵 } ∈ Fin ) |
22 |
|
fiinopn |
⊢ ( 𝐽 ∈ Top → ( ( { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = 𝐵 } ⊆ 𝐽 ∧ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = 𝐵 } ≠ ∅ ∧ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = 𝐵 } ∈ Fin ) → ∩ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = 𝐵 } ∈ 𝐽 ) ) |
23 |
22
|
imp |
⊢ ( ( 𝐽 ∈ Top ∧ ( { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = 𝐵 } ⊆ 𝐽 ∧ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = 𝐵 } ≠ ∅ ∧ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = 𝐵 } ∈ Fin ) ) → ∩ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = 𝐵 } ∈ 𝐽 ) |
24 |
4 10 18 21 23
|
syl13anc |
⊢ ( ( 𝐽 ∈ Top ∧ ( 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝐽 ) ) → ∩ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = 𝐵 } ∈ 𝐽 ) |
25 |
3 24
|
eqeltrd |
⊢ ( ( 𝐽 ∈ Top ∧ ( 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝐽 ) ) → ∩ 𝑥 ∈ 𝐴 𝐵 ∈ 𝐽 ) |