Description: The power class of an intersection in terms of indexed intersection. Exercise 24(a) of Enderton p. 33. (Contributed by NM, 29-Nov-2003)
Ref | Expression | ||
---|---|---|---|
Assertion | iinpw | ⊢ 𝒫 ∩ 𝐴 = ∩ 𝑥 ∈ 𝐴 𝒫 𝑥 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssint | ⊢ ( 𝑦 ⊆ ∩ 𝐴 ↔ ∀ 𝑥 ∈ 𝐴 𝑦 ⊆ 𝑥 ) | |
2 | velpw | ⊢ ( 𝑦 ∈ 𝒫 𝑥 ↔ 𝑦 ⊆ 𝑥 ) | |
3 | 2 | ralbii | ⊢ ( ∀ 𝑥 ∈ 𝐴 𝑦 ∈ 𝒫 𝑥 ↔ ∀ 𝑥 ∈ 𝐴 𝑦 ⊆ 𝑥 ) |
4 | 1 3 | bitr4i | ⊢ ( 𝑦 ⊆ ∩ 𝐴 ↔ ∀ 𝑥 ∈ 𝐴 𝑦 ∈ 𝒫 𝑥 ) |
5 | velpw | ⊢ ( 𝑦 ∈ 𝒫 ∩ 𝐴 ↔ 𝑦 ⊆ ∩ 𝐴 ) | |
6 | eliin | ⊢ ( 𝑦 ∈ V → ( 𝑦 ∈ ∩ 𝑥 ∈ 𝐴 𝒫 𝑥 ↔ ∀ 𝑥 ∈ 𝐴 𝑦 ∈ 𝒫 𝑥 ) ) | |
7 | 6 | elv | ⊢ ( 𝑦 ∈ ∩ 𝑥 ∈ 𝐴 𝒫 𝑥 ↔ ∀ 𝑥 ∈ 𝐴 𝑦 ∈ 𝒫 𝑥 ) |
8 | 4 5 7 | 3bitr4i | ⊢ ( 𝑦 ∈ 𝒫 ∩ 𝐴 ↔ 𝑦 ∈ ∩ 𝑥 ∈ 𝐴 𝒫 𝑥 ) |
9 | 8 | eqriv | ⊢ 𝒫 ∩ 𝐴 = ∩ 𝑥 ∈ 𝐴 𝒫 𝑥 |