Metamath Proof Explorer


Theorem iinpw

Description: The power class of an intersection in terms of indexed intersection. Exercise 24(a) of Enderton p. 33. (Contributed by NM, 29-Nov-2003)

Ref Expression
Assertion iinpw 𝒫 𝐴 = 𝑥𝐴 𝒫 𝑥

Proof

Step Hyp Ref Expression
1 ssint ( 𝑦 𝐴 ↔ ∀ 𝑥𝐴 𝑦𝑥 )
2 velpw ( 𝑦 ∈ 𝒫 𝑥𝑦𝑥 )
3 2 ralbii ( ∀ 𝑥𝐴 𝑦 ∈ 𝒫 𝑥 ↔ ∀ 𝑥𝐴 𝑦𝑥 )
4 1 3 bitr4i ( 𝑦 𝐴 ↔ ∀ 𝑥𝐴 𝑦 ∈ 𝒫 𝑥 )
5 velpw ( 𝑦 ∈ 𝒫 𝐴𝑦 𝐴 )
6 eliin ( 𝑦 ∈ V → ( 𝑦 𝑥𝐴 𝒫 𝑥 ↔ ∀ 𝑥𝐴 𝑦 ∈ 𝒫 𝑥 ) )
7 6 elv ( 𝑦 𝑥𝐴 𝒫 𝑥 ↔ ∀ 𝑥𝐴 𝑦 ∈ 𝒫 𝑥 )
8 4 5 7 3bitr4i ( 𝑦 ∈ 𝒫 𝐴𝑦 𝑥𝐴 𝒫 𝑥 )
9 8 eqriv 𝒫 𝐴 = 𝑥𝐴 𝒫 𝑥