| Step | Hyp | Ref | Expression | 
						
							| 1 |  | r19.28zv | ⊢ ( 𝐴  ≠  ∅  →  ( ∀ 𝑥  ∈  𝐴 ( 𝑦  ∈  𝐵  ∧  𝜑 )  ↔  ( 𝑦  ∈  𝐵  ∧  ∀ 𝑥  ∈  𝐴 𝜑 ) ) ) | 
						
							| 2 | 1 | abbidv | ⊢ ( 𝐴  ≠  ∅  →  { 𝑦  ∣  ∀ 𝑥  ∈  𝐴 ( 𝑦  ∈  𝐵  ∧  𝜑 ) }  =  { 𝑦  ∣  ( 𝑦  ∈  𝐵  ∧  ∀ 𝑥  ∈  𝐴 𝜑 ) } ) | 
						
							| 3 |  | df-rab | ⊢ { 𝑦  ∈  𝐵  ∣  𝜑 }  =  { 𝑦  ∣  ( 𝑦  ∈  𝐵  ∧  𝜑 ) } | 
						
							| 4 | 3 | a1i | ⊢ ( 𝑥  ∈  𝐴  →  { 𝑦  ∈  𝐵  ∣  𝜑 }  =  { 𝑦  ∣  ( 𝑦  ∈  𝐵  ∧  𝜑 ) } ) | 
						
							| 5 | 4 | iineq2i | ⊢ ∩  𝑥  ∈  𝐴 { 𝑦  ∈  𝐵  ∣  𝜑 }  =  ∩  𝑥  ∈  𝐴 { 𝑦  ∣  ( 𝑦  ∈  𝐵  ∧  𝜑 ) } | 
						
							| 6 |  | iinab | ⊢ ∩  𝑥  ∈  𝐴 { 𝑦  ∣  ( 𝑦  ∈  𝐵  ∧  𝜑 ) }  =  { 𝑦  ∣  ∀ 𝑥  ∈  𝐴 ( 𝑦  ∈  𝐵  ∧  𝜑 ) } | 
						
							| 7 | 5 6 | eqtri | ⊢ ∩  𝑥  ∈  𝐴 { 𝑦  ∈  𝐵  ∣  𝜑 }  =  { 𝑦  ∣  ∀ 𝑥  ∈  𝐴 ( 𝑦  ∈  𝐵  ∧  𝜑 ) } | 
						
							| 8 |  | df-rab | ⊢ { 𝑦  ∈  𝐵  ∣  ∀ 𝑥  ∈  𝐴 𝜑 }  =  { 𝑦  ∣  ( 𝑦  ∈  𝐵  ∧  ∀ 𝑥  ∈  𝐴 𝜑 ) } | 
						
							| 9 | 2 7 8 | 3eqtr4g | ⊢ ( 𝐴  ≠  ∅  →  ∩  𝑥  ∈  𝐴 { 𝑦  ∈  𝐵  ∣  𝜑 }  =  { 𝑦  ∈  𝐵  ∣  ∀ 𝑥  ∈  𝐴 𝜑 } ) |