Step |
Hyp |
Ref |
Expression |
1 |
|
r19.28zv |
⊢ ( 𝐴 ≠ ∅ → ( ∀ 𝑥 ∈ 𝐴 ( 𝑦 ∈ 𝐵 ∧ 𝜑 ) ↔ ( 𝑦 ∈ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 𝜑 ) ) ) |
2 |
1
|
abbidv |
⊢ ( 𝐴 ≠ ∅ → { 𝑦 ∣ ∀ 𝑥 ∈ 𝐴 ( 𝑦 ∈ 𝐵 ∧ 𝜑 ) } = { 𝑦 ∣ ( 𝑦 ∈ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 𝜑 ) } ) |
3 |
|
df-rab |
⊢ { 𝑦 ∈ 𝐵 ∣ 𝜑 } = { 𝑦 ∣ ( 𝑦 ∈ 𝐵 ∧ 𝜑 ) } |
4 |
3
|
a1i |
⊢ ( 𝑥 ∈ 𝐴 → { 𝑦 ∈ 𝐵 ∣ 𝜑 } = { 𝑦 ∣ ( 𝑦 ∈ 𝐵 ∧ 𝜑 ) } ) |
5 |
4
|
iineq2i |
⊢ ∩ 𝑥 ∈ 𝐴 { 𝑦 ∈ 𝐵 ∣ 𝜑 } = ∩ 𝑥 ∈ 𝐴 { 𝑦 ∣ ( 𝑦 ∈ 𝐵 ∧ 𝜑 ) } |
6 |
|
iinab |
⊢ ∩ 𝑥 ∈ 𝐴 { 𝑦 ∣ ( 𝑦 ∈ 𝐵 ∧ 𝜑 ) } = { 𝑦 ∣ ∀ 𝑥 ∈ 𝐴 ( 𝑦 ∈ 𝐵 ∧ 𝜑 ) } |
7 |
5 6
|
eqtri |
⊢ ∩ 𝑥 ∈ 𝐴 { 𝑦 ∈ 𝐵 ∣ 𝜑 } = { 𝑦 ∣ ∀ 𝑥 ∈ 𝐴 ( 𝑦 ∈ 𝐵 ∧ 𝜑 ) } |
8 |
|
df-rab |
⊢ { 𝑦 ∈ 𝐵 ∣ ∀ 𝑥 ∈ 𝐴 𝜑 } = { 𝑦 ∣ ( 𝑦 ∈ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 𝜑 ) } |
9 |
2 7 8
|
3eqtr4g |
⊢ ( 𝐴 ≠ ∅ → ∩ 𝑥 ∈ 𝐴 { 𝑦 ∈ 𝐵 ∣ 𝜑 } = { 𝑦 ∈ 𝐵 ∣ ∀ 𝑥 ∈ 𝐴 𝜑 } ) |