Metamath Proof Explorer


Theorem iinrab

Description: Indexed intersection of a restricted class abstraction. (Contributed by NM, 6-Dec-2011)

Ref Expression
Assertion iinrab ( 𝐴 ≠ ∅ → 𝑥𝐴 { 𝑦𝐵𝜑 } = { 𝑦𝐵 ∣ ∀ 𝑥𝐴 𝜑 } )

Proof

Step Hyp Ref Expression
1 r19.28zv ( 𝐴 ≠ ∅ → ( ∀ 𝑥𝐴 ( 𝑦𝐵𝜑 ) ↔ ( 𝑦𝐵 ∧ ∀ 𝑥𝐴 𝜑 ) ) )
2 1 abbidv ( 𝐴 ≠ ∅ → { 𝑦 ∣ ∀ 𝑥𝐴 ( 𝑦𝐵𝜑 ) } = { 𝑦 ∣ ( 𝑦𝐵 ∧ ∀ 𝑥𝐴 𝜑 ) } )
3 df-rab { 𝑦𝐵𝜑 } = { 𝑦 ∣ ( 𝑦𝐵𝜑 ) }
4 3 a1i ( 𝑥𝐴 → { 𝑦𝐵𝜑 } = { 𝑦 ∣ ( 𝑦𝐵𝜑 ) } )
5 4 iineq2i 𝑥𝐴 { 𝑦𝐵𝜑 } = 𝑥𝐴 { 𝑦 ∣ ( 𝑦𝐵𝜑 ) }
6 iinab 𝑥𝐴 { 𝑦 ∣ ( 𝑦𝐵𝜑 ) } = { 𝑦 ∣ ∀ 𝑥𝐴 ( 𝑦𝐵𝜑 ) }
7 5 6 eqtri 𝑥𝐴 { 𝑦𝐵𝜑 } = { 𝑦 ∣ ∀ 𝑥𝐴 ( 𝑦𝐵𝜑 ) }
8 df-rab { 𝑦𝐵 ∣ ∀ 𝑥𝐴 𝜑 } = { 𝑦 ∣ ( 𝑦𝐵 ∧ ∀ 𝑥𝐴 𝜑 ) }
9 2 7 8 3eqtr4g ( 𝐴 ≠ ∅ → 𝑥𝐴 { 𝑦𝐵𝜑 } = { 𝑦𝐵 ∣ ∀ 𝑥𝐴 𝜑 } )