| Step | Hyp | Ref | Expression | 
						
							| 1 |  | iineq1 | ⊢ ( 𝐴  =  ∅  →  ∩  𝑥  ∈  𝐴 { 𝑦  ∈  𝐵  ∣  𝜑 }  =  ∩  𝑥  ∈  ∅ { 𝑦  ∈  𝐵  ∣  𝜑 } ) | 
						
							| 2 |  | 0iin | ⊢ ∩  𝑥  ∈  ∅ { 𝑦  ∈  𝐵  ∣  𝜑 }  =  V | 
						
							| 3 | 1 2 | eqtrdi | ⊢ ( 𝐴  =  ∅  →  ∩  𝑥  ∈  𝐴 { 𝑦  ∈  𝐵  ∣  𝜑 }  =  V ) | 
						
							| 4 | 3 | ineq1d | ⊢ ( 𝐴  =  ∅  →  ( ∩  𝑥  ∈  𝐴 { 𝑦  ∈  𝐵  ∣  𝜑 }  ∩  𝐵 )  =  ( V  ∩  𝐵 ) ) | 
						
							| 5 |  | incom | ⊢ ( V  ∩  𝐵 )  =  ( 𝐵  ∩  V ) | 
						
							| 6 |  | inv1 | ⊢ ( 𝐵  ∩  V )  =  𝐵 | 
						
							| 7 | 5 6 | eqtri | ⊢ ( V  ∩  𝐵 )  =  𝐵 | 
						
							| 8 | 4 7 | eqtrdi | ⊢ ( 𝐴  =  ∅  →  ( ∩  𝑥  ∈  𝐴 { 𝑦  ∈  𝐵  ∣  𝜑 }  ∩  𝐵 )  =  𝐵 ) | 
						
							| 9 |  | rzal | ⊢ ( 𝐴  =  ∅  →  ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐵 𝜑 ) | 
						
							| 10 |  | rabid2 | ⊢ ( 𝐵  =  { 𝑦  ∈  𝐵  ∣  ∀ 𝑥  ∈  𝐴 𝜑 }  ↔  ∀ 𝑦  ∈  𝐵 ∀ 𝑥  ∈  𝐴 𝜑 ) | 
						
							| 11 |  | ralcom | ⊢ ( ∀ 𝑦  ∈  𝐵 ∀ 𝑥  ∈  𝐴 𝜑  ↔  ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐵 𝜑 ) | 
						
							| 12 | 10 11 | bitr2i | ⊢ ( ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐵 𝜑  ↔  𝐵  =  { 𝑦  ∈  𝐵  ∣  ∀ 𝑥  ∈  𝐴 𝜑 } ) | 
						
							| 13 | 9 12 | sylib | ⊢ ( 𝐴  =  ∅  →  𝐵  =  { 𝑦  ∈  𝐵  ∣  ∀ 𝑥  ∈  𝐴 𝜑 } ) | 
						
							| 14 | 8 13 | eqtrd | ⊢ ( 𝐴  =  ∅  →  ( ∩  𝑥  ∈  𝐴 { 𝑦  ∈  𝐵  ∣  𝜑 }  ∩  𝐵 )  =  { 𝑦  ∈  𝐵  ∣  ∀ 𝑥  ∈  𝐴 𝜑 } ) | 
						
							| 15 |  | iinrab | ⊢ ( 𝐴  ≠  ∅  →  ∩  𝑥  ∈  𝐴 { 𝑦  ∈  𝐵  ∣  𝜑 }  =  { 𝑦  ∈  𝐵  ∣  ∀ 𝑥  ∈  𝐴 𝜑 } ) | 
						
							| 16 | 15 | ineq1d | ⊢ ( 𝐴  ≠  ∅  →  ( ∩  𝑥  ∈  𝐴 { 𝑦  ∈  𝐵  ∣  𝜑 }  ∩  𝐵 )  =  ( { 𝑦  ∈  𝐵  ∣  ∀ 𝑥  ∈  𝐴 𝜑 }  ∩  𝐵 ) ) | 
						
							| 17 |  | ssrab2 | ⊢ { 𝑦  ∈  𝐵  ∣  ∀ 𝑥  ∈  𝐴 𝜑 }  ⊆  𝐵 | 
						
							| 18 |  | dfss | ⊢ ( { 𝑦  ∈  𝐵  ∣  ∀ 𝑥  ∈  𝐴 𝜑 }  ⊆  𝐵  ↔  { 𝑦  ∈  𝐵  ∣  ∀ 𝑥  ∈  𝐴 𝜑 }  =  ( { 𝑦  ∈  𝐵  ∣  ∀ 𝑥  ∈  𝐴 𝜑 }  ∩  𝐵 ) ) | 
						
							| 19 | 17 18 | mpbi | ⊢ { 𝑦  ∈  𝐵  ∣  ∀ 𝑥  ∈  𝐴 𝜑 }  =  ( { 𝑦  ∈  𝐵  ∣  ∀ 𝑥  ∈  𝐴 𝜑 }  ∩  𝐵 ) | 
						
							| 20 | 16 19 | eqtr4di | ⊢ ( 𝐴  ≠  ∅  →  ( ∩  𝑥  ∈  𝐴 { 𝑦  ∈  𝐵  ∣  𝜑 }  ∩  𝐵 )  =  { 𝑦  ∈  𝐵  ∣  ∀ 𝑥  ∈  𝐴 𝜑 } ) | 
						
							| 21 | 14 20 | pm2.61ine | ⊢ ( ∩  𝑥  ∈  𝐴 { 𝑦  ∈  𝐵  ∣  𝜑 }  ∩  𝐵 )  =  { 𝑦  ∈  𝐵  ∣  ∀ 𝑥  ∈  𝐴 𝜑 } |