Metamath Proof Explorer


Theorem iinss

Description: Subset implication for an indexed intersection. (Contributed by NM, 15-Oct-2003) (Proof shortened by Andrew Salmon, 25-Jul-2011)

Ref Expression
Assertion iinss ( ∃ 𝑥𝐴 𝐵𝐶 𝑥𝐴 𝐵𝐶 )

Proof

Step Hyp Ref Expression
1 eliin ( 𝑦 ∈ V → ( 𝑦 𝑥𝐴 𝐵 ↔ ∀ 𝑥𝐴 𝑦𝐵 ) )
2 1 elv ( 𝑦 𝑥𝐴 𝐵 ↔ ∀ 𝑥𝐴 𝑦𝐵 )
3 ssel ( 𝐵𝐶 → ( 𝑦𝐵𝑦𝐶 ) )
4 3 reximi ( ∃ 𝑥𝐴 𝐵𝐶 → ∃ 𝑥𝐴 ( 𝑦𝐵𝑦𝐶 ) )
5 r19.36v ( ∃ 𝑥𝐴 ( 𝑦𝐵𝑦𝐶 ) → ( ∀ 𝑥𝐴 𝑦𝐵𝑦𝐶 ) )
6 4 5 syl ( ∃ 𝑥𝐴 𝐵𝐶 → ( ∀ 𝑥𝐴 𝑦𝐵𝑦𝐶 ) )
7 2 6 syl5bi ( ∃ 𝑥𝐴 𝐵𝐶 → ( 𝑦 𝑥𝐴 𝐵𝑦𝐶 ) )
8 7 ssrdv ( ∃ 𝑥𝐴 𝐵𝐶 𝑥𝐴 𝐵𝐶 )