Description: Subclass theorem for indexed intersection. (Contributed by NM, 24-Jan-2012)
Ref | Expression | ||
---|---|---|---|
Assertion | iinss1 | ⊢ ( 𝐴 ⊆ 𝐵 → ∩ 𝑥 ∈ 𝐵 𝐶 ⊆ ∩ 𝑥 ∈ 𝐴 𝐶 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssralv | ⊢ ( 𝐴 ⊆ 𝐵 → ( ∀ 𝑥 ∈ 𝐵 𝑦 ∈ 𝐶 → ∀ 𝑥 ∈ 𝐴 𝑦 ∈ 𝐶 ) ) | |
2 | eliin | ⊢ ( 𝑦 ∈ V → ( 𝑦 ∈ ∩ 𝑥 ∈ 𝐵 𝐶 ↔ ∀ 𝑥 ∈ 𝐵 𝑦 ∈ 𝐶 ) ) | |
3 | 2 | elv | ⊢ ( 𝑦 ∈ ∩ 𝑥 ∈ 𝐵 𝐶 ↔ ∀ 𝑥 ∈ 𝐵 𝑦 ∈ 𝐶 ) |
4 | eliin | ⊢ ( 𝑦 ∈ V → ( 𝑦 ∈ ∩ 𝑥 ∈ 𝐴 𝐶 ↔ ∀ 𝑥 ∈ 𝐴 𝑦 ∈ 𝐶 ) ) | |
5 | 4 | elv | ⊢ ( 𝑦 ∈ ∩ 𝑥 ∈ 𝐴 𝐶 ↔ ∀ 𝑥 ∈ 𝐴 𝑦 ∈ 𝐶 ) |
6 | 1 3 5 | 3imtr4g | ⊢ ( 𝐴 ⊆ 𝐵 → ( 𝑦 ∈ ∩ 𝑥 ∈ 𝐵 𝐶 → 𝑦 ∈ ∩ 𝑥 ∈ 𝐴 𝐶 ) ) |
7 | 6 | ssrdv | ⊢ ( 𝐴 ⊆ 𝐵 → ∩ 𝑥 ∈ 𝐵 𝐶 ⊆ ∩ 𝑥 ∈ 𝐴 𝐶 ) |