Metamath Proof Explorer


Theorem iinss1

Description: Subclass theorem for indexed intersection. (Contributed by NM, 24-Jan-2012)

Ref Expression
Assertion iinss1 ( 𝐴𝐵 𝑥𝐵 𝐶 𝑥𝐴 𝐶 )

Proof

Step Hyp Ref Expression
1 ssralv ( 𝐴𝐵 → ( ∀ 𝑥𝐵 𝑦𝐶 → ∀ 𝑥𝐴 𝑦𝐶 ) )
2 eliin ( 𝑦 ∈ V → ( 𝑦 𝑥𝐵 𝐶 ↔ ∀ 𝑥𝐵 𝑦𝐶 ) )
3 2 elv ( 𝑦 𝑥𝐵 𝐶 ↔ ∀ 𝑥𝐵 𝑦𝐶 )
4 eliin ( 𝑦 ∈ V → ( 𝑦 𝑥𝐴 𝐶 ↔ ∀ 𝑥𝐴 𝑦𝐶 ) )
5 4 elv ( 𝑦 𝑥𝐴 𝐶 ↔ ∀ 𝑥𝐴 𝑦𝐶 )
6 1 3 5 3imtr4g ( 𝐴𝐵 → ( 𝑦 𝑥𝐵 𝐶𝑦 𝑥𝐴 𝐶 ) )
7 6 ssrdv ( 𝐴𝐵 𝑥𝐵 𝐶 𝑥𝐴 𝐶 )