Description: Subset implication for an indexed intersection. (Contributed by Glauco Siliprandi, 24-Jan-2025)
Ref | Expression | ||
---|---|---|---|
Hypotheses | iinss2d.1 | ⊢ Ⅎ 𝑥 𝜑 | |
iinss2d.2 | ⊢ Ⅎ 𝑥 𝐴 | ||
iinss2d.3 | ⊢ Ⅎ 𝑥 𝐶 | ||
iinss2d.4 | ⊢ ( 𝜑 → 𝐴 ≠ ∅ ) | ||
iinss2d.5 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ⊆ 𝐶 ) | ||
Assertion | iinss2d | ⊢ ( 𝜑 → ∩ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iinss2d.1 | ⊢ Ⅎ 𝑥 𝜑 | |
2 | iinss2d.2 | ⊢ Ⅎ 𝑥 𝐴 | |
3 | iinss2d.3 | ⊢ Ⅎ 𝑥 𝐶 | |
4 | iinss2d.4 | ⊢ ( 𝜑 → 𝐴 ≠ ∅ ) | |
5 | iinss2d.5 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ⊆ 𝐶 ) | |
6 | 5 | 3adant3 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ∧ ⊤ ) → 𝐵 ⊆ 𝐶 ) |
7 | 2 | n0f | ⊢ ( 𝐴 ≠ ∅ ↔ ∃ 𝑥 𝑥 ∈ 𝐴 ) |
8 | 4 7 | sylib | ⊢ ( 𝜑 → ∃ 𝑥 𝑥 ∈ 𝐴 ) |
9 | rextru | ⊢ ( ∃ 𝑥 𝑥 ∈ 𝐴 ↔ ∃ 𝑥 ∈ 𝐴 ⊤ ) | |
10 | 8 9 | sylib | ⊢ ( 𝜑 → ∃ 𝑥 ∈ 𝐴 ⊤ ) |
11 | 1 6 10 | reximdd | ⊢ ( 𝜑 → ∃ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶 ) |
12 | 3 | iinssf | ⊢ ( ∃ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶 → ∩ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶 ) |
13 | 11 12 | syl | ⊢ ( 𝜑 → ∩ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶 ) |