Description: Subset implication for an indexed intersection. (Contributed by Glauco Siliprandi, 23-Oct-2021)
Ref | Expression | ||
---|---|---|---|
Hypotheses | iinssd.1 | ⊢ ( 𝜑 → 𝑋 ∈ 𝐴 ) | |
iinssd.2 | ⊢ ( 𝑥 = 𝑋 → 𝐵 = 𝐷 ) | ||
iinssd.3 | ⊢ ( 𝜑 → 𝐷 ⊆ 𝐶 ) | ||
Assertion | iinssd | ⊢ ( 𝜑 → ∩ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iinssd.1 | ⊢ ( 𝜑 → 𝑋 ∈ 𝐴 ) | |
2 | iinssd.2 | ⊢ ( 𝑥 = 𝑋 → 𝐵 = 𝐷 ) | |
3 | iinssd.3 | ⊢ ( 𝜑 → 𝐷 ⊆ 𝐶 ) | |
4 | 2 | sseq1d | ⊢ ( 𝑥 = 𝑋 → ( 𝐵 ⊆ 𝐶 ↔ 𝐷 ⊆ 𝐶 ) ) |
5 | 4 | rspcev | ⊢ ( ( 𝑋 ∈ 𝐴 ∧ 𝐷 ⊆ 𝐶 ) → ∃ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶 ) |
6 | 1 3 5 | syl2anc | ⊢ ( 𝜑 → ∃ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶 ) |
7 | iinss | ⊢ ( ∃ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶 → ∩ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶 ) | |
8 | 6 7 | syl | ⊢ ( 𝜑 → ∩ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶 ) |