Metamath Proof Explorer


Theorem iinssd

Description: Subset implication for an indexed intersection. (Contributed by Glauco Siliprandi, 23-Oct-2021)

Ref Expression
Hypotheses iinssd.1 ( 𝜑𝑋𝐴 )
iinssd.2 ( 𝑥 = 𝑋𝐵 = 𝐷 )
iinssd.3 ( 𝜑𝐷𝐶 )
Assertion iinssd ( 𝜑 𝑥𝐴 𝐵𝐶 )

Proof

Step Hyp Ref Expression
1 iinssd.1 ( 𝜑𝑋𝐴 )
2 iinssd.2 ( 𝑥 = 𝑋𝐵 = 𝐷 )
3 iinssd.3 ( 𝜑𝐷𝐶 )
4 2 sseq1d ( 𝑥 = 𝑋 → ( 𝐵𝐶𝐷𝐶 ) )
5 4 rspcev ( ( 𝑋𝐴𝐷𝐶 ) → ∃ 𝑥𝐴 𝐵𝐶 )
6 1 3 5 syl2anc ( 𝜑 → ∃ 𝑥𝐴 𝐵𝐶 )
7 iinss ( ∃ 𝑥𝐴 𝐵𝐶 𝑥𝐴 𝐵𝐶 )
8 6 7 syl ( 𝜑 𝑥𝐴 𝐵𝐶 )