Metamath Proof Explorer
Description: Subset implication for an indexed intersection. (Contributed by Glauco
Siliprandi, 23-Oct-2021)
|
|
Ref |
Expression |
|
Hypotheses |
iinssdf.a |
⊢ Ⅎ 𝑥 𝐴 |
|
|
iinssdf.n |
⊢ Ⅎ 𝑥 𝑋 |
|
|
iinssdf.c |
⊢ Ⅎ 𝑥 𝐶 |
|
|
iinssdf.d |
⊢ Ⅎ 𝑥 𝐷 |
|
|
iinssdf.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐴 ) |
|
|
iinssdf.b |
⊢ ( 𝑥 = 𝑋 → 𝐵 = 𝐷 ) |
|
|
iinssdf.s |
⊢ ( 𝜑 → 𝐷 ⊆ 𝐶 ) |
|
Assertion |
iinssdf |
⊢ ( 𝜑 → ∩ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶 ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
iinssdf.a |
⊢ Ⅎ 𝑥 𝐴 |
2 |
|
iinssdf.n |
⊢ Ⅎ 𝑥 𝑋 |
3 |
|
iinssdf.c |
⊢ Ⅎ 𝑥 𝐶 |
4 |
|
iinssdf.d |
⊢ Ⅎ 𝑥 𝐷 |
5 |
|
iinssdf.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐴 ) |
6 |
|
iinssdf.b |
⊢ ( 𝑥 = 𝑋 → 𝐵 = 𝐷 ) |
7 |
|
iinssdf.s |
⊢ ( 𝜑 → 𝐷 ⊆ 𝐶 ) |
8 |
4 3
|
nfss |
⊢ Ⅎ 𝑥 𝐷 ⊆ 𝐶 |
9 |
6
|
sseq1d |
⊢ ( 𝑥 = 𝑋 → ( 𝐵 ⊆ 𝐶 ↔ 𝐷 ⊆ 𝐶 ) ) |
10 |
8 2 1 9
|
rspcef |
⊢ ( ( 𝑋 ∈ 𝐴 ∧ 𝐷 ⊆ 𝐶 ) → ∃ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶 ) |
11 |
5 7 10
|
syl2anc |
⊢ ( 𝜑 → ∃ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶 ) |
12 |
3
|
iinssf |
⊢ ( ∃ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶 → ∩ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶 ) |
13 |
11 12
|
syl |
⊢ ( 𝜑 → ∩ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶 ) |