Metamath Proof Explorer


Theorem iinssdf

Description: Subset implication for an indexed intersection. (Contributed by Glauco Siliprandi, 23-Oct-2021)

Ref Expression
Hypotheses iinssdf.a 𝑥 𝐴
iinssdf.n 𝑥 𝑋
iinssdf.c 𝑥 𝐶
iinssdf.d 𝑥 𝐷
iinssdf.x ( 𝜑𝑋𝐴 )
iinssdf.b ( 𝑥 = 𝑋𝐵 = 𝐷 )
iinssdf.s ( 𝜑𝐷𝐶 )
Assertion iinssdf ( 𝜑 𝑥𝐴 𝐵𝐶 )

Proof

Step Hyp Ref Expression
1 iinssdf.a 𝑥 𝐴
2 iinssdf.n 𝑥 𝑋
3 iinssdf.c 𝑥 𝐶
4 iinssdf.d 𝑥 𝐷
5 iinssdf.x ( 𝜑𝑋𝐴 )
6 iinssdf.b ( 𝑥 = 𝑋𝐵 = 𝐷 )
7 iinssdf.s ( 𝜑𝐷𝐶 )
8 4 3 nfss 𝑥 𝐷𝐶
9 6 sseq1d ( 𝑥 = 𝑋 → ( 𝐵𝐶𝐷𝐶 ) )
10 8 2 1 9 rspcef ( ( 𝑋𝐴𝐷𝐶 ) → ∃ 𝑥𝐴 𝐵𝐶 )
11 5 7 10 syl2anc ( 𝜑 → ∃ 𝑥𝐴 𝐵𝐶 )
12 3 iinssf ( ∃ 𝑥𝐴 𝐵𝐶 𝑥𝐴 𝐵𝐶 )
13 11 12 syl ( 𝜑 𝑥𝐴 𝐵𝐶 )