Step |
Hyp |
Ref |
Expression |
1 |
|
iinssf.1 |
⊢ Ⅎ 𝑥 𝐶 |
2 |
|
eliin |
⊢ ( 𝑦 ∈ V → ( 𝑦 ∈ ∩ 𝑥 ∈ 𝐴 𝐵 ↔ ∀ 𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 ) ) |
3 |
2
|
elv |
⊢ ( 𝑦 ∈ ∩ 𝑥 ∈ 𝐴 𝐵 ↔ ∀ 𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 ) |
4 |
|
ssel |
⊢ ( 𝐵 ⊆ 𝐶 → ( 𝑦 ∈ 𝐵 → 𝑦 ∈ 𝐶 ) ) |
5 |
4
|
reximi |
⊢ ( ∃ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶 → ∃ 𝑥 ∈ 𝐴 ( 𝑦 ∈ 𝐵 → 𝑦 ∈ 𝐶 ) ) |
6 |
1
|
nfcri |
⊢ Ⅎ 𝑥 𝑦 ∈ 𝐶 |
7 |
6
|
r19.36vf |
⊢ ( ∃ 𝑥 ∈ 𝐴 ( 𝑦 ∈ 𝐵 → 𝑦 ∈ 𝐶 ) → ( ∀ 𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 → 𝑦 ∈ 𝐶 ) ) |
8 |
5 7
|
syl |
⊢ ( ∃ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶 → ( ∀ 𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 → 𝑦 ∈ 𝐶 ) ) |
9 |
3 8
|
syl5bi |
⊢ ( ∃ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶 → ( 𝑦 ∈ ∩ 𝑥 ∈ 𝐴 𝐵 → 𝑦 ∈ 𝐶 ) ) |
10 |
9
|
ssrdv |
⊢ ( ∃ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶 → ∩ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶 ) |