Metamath Proof Explorer


Theorem iinssf

Description: Subset implication for an indexed intersection. (Contributed by Glauco Siliprandi, 23-Oct-2021)

Ref Expression
Hypothesis iinssf.1 𝑥 𝐶
Assertion iinssf ( ∃ 𝑥𝐴 𝐵𝐶 𝑥𝐴 𝐵𝐶 )

Proof

Step Hyp Ref Expression
1 iinssf.1 𝑥 𝐶
2 eliin ( 𝑦 ∈ V → ( 𝑦 𝑥𝐴 𝐵 ↔ ∀ 𝑥𝐴 𝑦𝐵 ) )
3 2 elv ( 𝑦 𝑥𝐴 𝐵 ↔ ∀ 𝑥𝐴 𝑦𝐵 )
4 ssel ( 𝐵𝐶 → ( 𝑦𝐵𝑦𝐶 ) )
5 4 reximi ( ∃ 𝑥𝐴 𝐵𝐶 → ∃ 𝑥𝐴 ( 𝑦𝐵𝑦𝐶 ) )
6 1 nfcri 𝑥 𝑦𝐶
7 6 r19.36vf ( ∃ 𝑥𝐴 ( 𝑦𝐵𝑦𝐶 ) → ( ∀ 𝑥𝐴 𝑦𝐵𝑦𝐶 ) )
8 5 7 syl ( ∃ 𝑥𝐴 𝐵𝐶 → ( ∀ 𝑥𝐴 𝑦𝐵𝑦𝐶 ) )
9 3 8 syl5bi ( ∃ 𝑥𝐴 𝐵𝐶 → ( 𝑦 𝑥𝐴 𝐵𝑦𝐶 ) )
10 9 ssrdv ( ∃ 𝑥𝐴 𝐵𝐶 𝑥𝐴 𝐵𝐶 )