| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							iinssiin.1 | 
							⊢ Ⅎ 𝑥 𝜑  | 
						
						
							| 2 | 
							
								
							 | 
							iinssiin.2 | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  𝐵  ⊆  𝐶 )  | 
						
						
							| 3 | 
							
								
							 | 
							nfii1 | 
							⊢ Ⅎ 𝑥 ∩  𝑥  ∈  𝐴 𝐵  | 
						
						
							| 4 | 
							
								3
							 | 
							nfcri | 
							⊢ Ⅎ 𝑥 𝑦  ∈  ∩  𝑥  ∈  𝐴 𝐵  | 
						
						
							| 5 | 
							
								1 4
							 | 
							nfan | 
							⊢ Ⅎ 𝑥 ( 𝜑  ∧  𝑦  ∈  ∩  𝑥  ∈  𝐴 𝐵 )  | 
						
						
							| 6 | 
							
								2
							 | 
							adantlr | 
							⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ∩  𝑥  ∈  𝐴 𝐵 )  ∧  𝑥  ∈  𝐴 )  →  𝐵  ⊆  𝐶 )  | 
						
						
							| 7 | 
							
								
							 | 
							eliinid | 
							⊢ ( ( 𝑦  ∈  ∩  𝑥  ∈  𝐴 𝐵  ∧  𝑥  ∈  𝐴 )  →  𝑦  ∈  𝐵 )  | 
						
						
							| 8 | 
							
								7
							 | 
							adantll | 
							⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ∩  𝑥  ∈  𝐴 𝐵 )  ∧  𝑥  ∈  𝐴 )  →  𝑦  ∈  𝐵 )  | 
						
						
							| 9 | 
							
								6 8
							 | 
							sseldd | 
							⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ∩  𝑥  ∈  𝐴 𝐵 )  ∧  𝑥  ∈  𝐴 )  →  𝑦  ∈  𝐶 )  | 
						
						
							| 10 | 
							
								9
							 | 
							ex | 
							⊢ ( ( 𝜑  ∧  𝑦  ∈  ∩  𝑥  ∈  𝐴 𝐵 )  →  ( 𝑥  ∈  𝐴  →  𝑦  ∈  𝐶 ) )  | 
						
						
							| 11 | 
							
								5 10
							 | 
							ralrimi | 
							⊢ ( ( 𝜑  ∧  𝑦  ∈  ∩  𝑥  ∈  𝐴 𝐵 )  →  ∀ 𝑥  ∈  𝐴 𝑦  ∈  𝐶 )  | 
						
						
							| 12 | 
							
								
							 | 
							eliin | 
							⊢ ( 𝑦  ∈  V  →  ( 𝑦  ∈  ∩  𝑥  ∈  𝐴 𝐶  ↔  ∀ 𝑥  ∈  𝐴 𝑦  ∈  𝐶 ) )  | 
						
						
							| 13 | 
							
								12
							 | 
							elv | 
							⊢ ( 𝑦  ∈  ∩  𝑥  ∈  𝐴 𝐶  ↔  ∀ 𝑥  ∈  𝐴 𝑦  ∈  𝐶 )  | 
						
						
							| 14 | 
							
								11 13
							 | 
							sylibr | 
							⊢ ( ( 𝜑  ∧  𝑦  ∈  ∩  𝑥  ∈  𝐴 𝐵 )  →  𝑦  ∈  ∩  𝑥  ∈  𝐴 𝐶 )  | 
						
						
							| 15 | 
							
								14
							 | 
							ssd | 
							⊢ ( 𝜑  →  ∩  𝑥  ∈  𝐴 𝐵  ⊆  ∩  𝑥  ∈  𝐴 𝐶 )  |