Metamath Proof Explorer


Theorem iinssiun

Description: An indexed intersection is a subset of the corresponding indexed union. (Contributed by Thierry Arnoux, 31-Dec-2021)

Ref Expression
Assertion iinssiun ( 𝐴 ≠ ∅ → 𝑥𝐴 𝐵 𝑥𝐴 𝐵 )

Proof

Step Hyp Ref Expression
1 r19.2z ( ( 𝐴 ≠ ∅ ∧ ∀ 𝑥𝐴 𝑦𝐵 ) → ∃ 𝑥𝐴 𝑦𝐵 )
2 1 ex ( 𝐴 ≠ ∅ → ( ∀ 𝑥𝐴 𝑦𝐵 → ∃ 𝑥𝐴 𝑦𝐵 ) )
3 eliin ( 𝑦 ∈ V → ( 𝑦 𝑥𝐴 𝐵 ↔ ∀ 𝑥𝐴 𝑦𝐵 ) )
4 3 elv ( 𝑦 𝑥𝐴 𝐵 ↔ ∀ 𝑥𝐴 𝑦𝐵 )
5 eliun ( 𝑦 𝑥𝐴 𝐵 ↔ ∃ 𝑥𝐴 𝑦𝐵 )
6 2 4 5 3imtr4g ( 𝐴 ≠ ∅ → ( 𝑦 𝑥𝐴 𝐵𝑦 𝑥𝐴 𝐵 ) )
7 6 ssrdv ( 𝐴 ≠ ∅ → 𝑥𝐴 𝐵 𝑥𝐴 𝐵 )