Description: An indexed intersection is a subset of the corresponding indexed union. (Contributed by Thierry Arnoux, 31-Dec-2021)
Ref | Expression | ||
---|---|---|---|
Assertion | iinssiun | ⊢ ( 𝐴 ≠ ∅ → ∩ 𝑥 ∈ 𝐴 𝐵 ⊆ ∪ 𝑥 ∈ 𝐴 𝐵 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | r19.2z | ⊢ ( ( 𝐴 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 ) → ∃ 𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 ) | |
2 | 1 | ex | ⊢ ( 𝐴 ≠ ∅ → ( ∀ 𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 → ∃ 𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 ) ) |
3 | eliin | ⊢ ( 𝑦 ∈ V → ( 𝑦 ∈ ∩ 𝑥 ∈ 𝐴 𝐵 ↔ ∀ 𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 ) ) | |
4 | 3 | elv | ⊢ ( 𝑦 ∈ ∩ 𝑥 ∈ 𝐴 𝐵 ↔ ∀ 𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 ) |
5 | eliun | ⊢ ( 𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ↔ ∃ 𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 ) | |
6 | 2 4 5 | 3imtr4g | ⊢ ( 𝐴 ≠ ∅ → ( 𝑦 ∈ ∩ 𝑥 ∈ 𝐴 𝐵 → 𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ) ) |
7 | 6 | ssrdv | ⊢ ( 𝐴 ≠ ∅ → ∩ 𝑥 ∈ 𝐴 𝐵 ⊆ ∪ 𝑥 ∈ 𝐴 𝐵 ) |