Metamath Proof Explorer


Theorem iinun2

Description: Indexed intersection of union. Generalization of half of theorem "Distributive laws" in Enderton p. 30. Use intiin to recover Enderton's theorem. (Contributed by NM, 19-Aug-2004)

Ref Expression
Assertion iinun2 𝑥𝐴 ( 𝐵𝐶 ) = ( 𝐵 𝑥𝐴 𝐶 )

Proof

Step Hyp Ref Expression
1 r19.32v ( ∀ 𝑥𝐴 ( 𝑦𝐵𝑦𝐶 ) ↔ ( 𝑦𝐵 ∨ ∀ 𝑥𝐴 𝑦𝐶 ) )
2 elun ( 𝑦 ∈ ( 𝐵𝐶 ) ↔ ( 𝑦𝐵𝑦𝐶 ) )
3 2 ralbii ( ∀ 𝑥𝐴 𝑦 ∈ ( 𝐵𝐶 ) ↔ ∀ 𝑥𝐴 ( 𝑦𝐵𝑦𝐶 ) )
4 eliin ( 𝑦 ∈ V → ( 𝑦 𝑥𝐴 𝐶 ↔ ∀ 𝑥𝐴 𝑦𝐶 ) )
5 4 elv ( 𝑦 𝑥𝐴 𝐶 ↔ ∀ 𝑥𝐴 𝑦𝐶 )
6 5 orbi2i ( ( 𝑦𝐵𝑦 𝑥𝐴 𝐶 ) ↔ ( 𝑦𝐵 ∨ ∀ 𝑥𝐴 𝑦𝐶 ) )
7 1 3 6 3bitr4i ( ∀ 𝑥𝐴 𝑦 ∈ ( 𝐵𝐶 ) ↔ ( 𝑦𝐵𝑦 𝑥𝐴 𝐶 ) )
8 eliin ( 𝑦 ∈ V → ( 𝑦 𝑥𝐴 ( 𝐵𝐶 ) ↔ ∀ 𝑥𝐴 𝑦 ∈ ( 𝐵𝐶 ) ) )
9 8 elv ( 𝑦 𝑥𝐴 ( 𝐵𝐶 ) ↔ ∀ 𝑥𝐴 𝑦 ∈ ( 𝐵𝐶 ) )
10 elun ( 𝑦 ∈ ( 𝐵 𝑥𝐴 𝐶 ) ↔ ( 𝑦𝐵𝑦 𝑥𝐴 𝐶 ) )
11 7 9 10 3bitr4i ( 𝑦 𝑥𝐴 ( 𝐵𝐶 ) ↔ 𝑦 ∈ ( 𝐵 𝑥𝐴 𝐶 ) )
12 11 eqriv 𝑥𝐴 ( 𝐵𝐶 ) = ( 𝐵 𝑥𝐴 𝐶 )