Step |
Hyp |
Ref |
Expression |
1 |
|
r19.32v |
⊢ ( ∀ 𝑥 ∈ 𝐵 ( 𝑦 ∈ 𝐴 ∨ 𝑦 ∈ 𝑥 ) ↔ ( 𝑦 ∈ 𝐴 ∨ ∀ 𝑥 ∈ 𝐵 𝑦 ∈ 𝑥 ) ) |
2 |
|
elun |
⊢ ( 𝑦 ∈ ( 𝐴 ∪ 𝑥 ) ↔ ( 𝑦 ∈ 𝐴 ∨ 𝑦 ∈ 𝑥 ) ) |
3 |
2
|
ralbii |
⊢ ( ∀ 𝑥 ∈ 𝐵 𝑦 ∈ ( 𝐴 ∪ 𝑥 ) ↔ ∀ 𝑥 ∈ 𝐵 ( 𝑦 ∈ 𝐴 ∨ 𝑦 ∈ 𝑥 ) ) |
4 |
|
vex |
⊢ 𝑦 ∈ V |
5 |
4
|
elint2 |
⊢ ( 𝑦 ∈ ∩ 𝐵 ↔ ∀ 𝑥 ∈ 𝐵 𝑦 ∈ 𝑥 ) |
6 |
5
|
orbi2i |
⊢ ( ( 𝑦 ∈ 𝐴 ∨ 𝑦 ∈ ∩ 𝐵 ) ↔ ( 𝑦 ∈ 𝐴 ∨ ∀ 𝑥 ∈ 𝐵 𝑦 ∈ 𝑥 ) ) |
7 |
1 3 6
|
3bitr4ri |
⊢ ( ( 𝑦 ∈ 𝐴 ∨ 𝑦 ∈ ∩ 𝐵 ) ↔ ∀ 𝑥 ∈ 𝐵 𝑦 ∈ ( 𝐴 ∪ 𝑥 ) ) |
8 |
7
|
abbii |
⊢ { 𝑦 ∣ ( 𝑦 ∈ 𝐴 ∨ 𝑦 ∈ ∩ 𝐵 ) } = { 𝑦 ∣ ∀ 𝑥 ∈ 𝐵 𝑦 ∈ ( 𝐴 ∪ 𝑥 ) } |
9 |
|
df-un |
⊢ ( 𝐴 ∪ ∩ 𝐵 ) = { 𝑦 ∣ ( 𝑦 ∈ 𝐴 ∨ 𝑦 ∈ ∩ 𝐵 ) } |
10 |
|
df-iin |
⊢ ∩ 𝑥 ∈ 𝐵 ( 𝐴 ∪ 𝑥 ) = { 𝑦 ∣ ∀ 𝑥 ∈ 𝐵 𝑦 ∈ ( 𝐴 ∪ 𝑥 ) } |
11 |
8 9 10
|
3eqtr4i |
⊢ ( 𝐴 ∪ ∩ 𝐵 ) = ∩ 𝑥 ∈ 𝐵 ( 𝐴 ∪ 𝑥 ) |