Metamath Proof Explorer


Theorem iinuni

Description: A relationship involving union and indexed intersection. Exercise 23 of Enderton p. 33. (Contributed by NM, 25-Nov-2003) (Proof shortened by Mario Carneiro, 17-Nov-2016)

Ref Expression
Assertion iinuni ( 𝐴 𝐵 ) = 𝑥𝐵 ( 𝐴𝑥 )

Proof

Step Hyp Ref Expression
1 r19.32v ( ∀ 𝑥𝐵 ( 𝑦𝐴𝑦𝑥 ) ↔ ( 𝑦𝐴 ∨ ∀ 𝑥𝐵 𝑦𝑥 ) )
2 elun ( 𝑦 ∈ ( 𝐴𝑥 ) ↔ ( 𝑦𝐴𝑦𝑥 ) )
3 2 ralbii ( ∀ 𝑥𝐵 𝑦 ∈ ( 𝐴𝑥 ) ↔ ∀ 𝑥𝐵 ( 𝑦𝐴𝑦𝑥 ) )
4 vex 𝑦 ∈ V
5 4 elint2 ( 𝑦 𝐵 ↔ ∀ 𝑥𝐵 𝑦𝑥 )
6 5 orbi2i ( ( 𝑦𝐴𝑦 𝐵 ) ↔ ( 𝑦𝐴 ∨ ∀ 𝑥𝐵 𝑦𝑥 ) )
7 1 3 6 3bitr4ri ( ( 𝑦𝐴𝑦 𝐵 ) ↔ ∀ 𝑥𝐵 𝑦 ∈ ( 𝐴𝑥 ) )
8 7 abbii { 𝑦 ∣ ( 𝑦𝐴𝑦 𝐵 ) } = { 𝑦 ∣ ∀ 𝑥𝐵 𝑦 ∈ ( 𝐴𝑥 ) }
9 df-un ( 𝐴 𝐵 ) = { 𝑦 ∣ ( 𝑦𝐴𝑦 𝐵 ) }
10 df-iin 𝑥𝐵 ( 𝐴𝑥 ) = { 𝑦 ∣ ∀ 𝑥𝐵 𝑦 ∈ ( 𝐴𝑥 ) }
11 8 9 10 3eqtr4i ( 𝐴 𝐵 ) = 𝑥𝐵 ( 𝐴𝑥 )