| Step |
Hyp |
Ref |
Expression |
| 1 |
|
r19.32v |
⊢ ( ∀ 𝑥 ∈ 𝐵 ( 𝑦 ∈ 𝐴 ∨ 𝑦 ∈ 𝑥 ) ↔ ( 𝑦 ∈ 𝐴 ∨ ∀ 𝑥 ∈ 𝐵 𝑦 ∈ 𝑥 ) ) |
| 2 |
|
elun |
⊢ ( 𝑦 ∈ ( 𝐴 ∪ 𝑥 ) ↔ ( 𝑦 ∈ 𝐴 ∨ 𝑦 ∈ 𝑥 ) ) |
| 3 |
2
|
ralbii |
⊢ ( ∀ 𝑥 ∈ 𝐵 𝑦 ∈ ( 𝐴 ∪ 𝑥 ) ↔ ∀ 𝑥 ∈ 𝐵 ( 𝑦 ∈ 𝐴 ∨ 𝑦 ∈ 𝑥 ) ) |
| 4 |
|
vex |
⊢ 𝑦 ∈ V |
| 5 |
4
|
elint2 |
⊢ ( 𝑦 ∈ ∩ 𝐵 ↔ ∀ 𝑥 ∈ 𝐵 𝑦 ∈ 𝑥 ) |
| 6 |
5
|
orbi2i |
⊢ ( ( 𝑦 ∈ 𝐴 ∨ 𝑦 ∈ ∩ 𝐵 ) ↔ ( 𝑦 ∈ 𝐴 ∨ ∀ 𝑥 ∈ 𝐵 𝑦 ∈ 𝑥 ) ) |
| 7 |
1 3 6
|
3bitr4ri |
⊢ ( ( 𝑦 ∈ 𝐴 ∨ 𝑦 ∈ ∩ 𝐵 ) ↔ ∀ 𝑥 ∈ 𝐵 𝑦 ∈ ( 𝐴 ∪ 𝑥 ) ) |
| 8 |
7
|
abbii |
⊢ { 𝑦 ∣ ( 𝑦 ∈ 𝐴 ∨ 𝑦 ∈ ∩ 𝐵 ) } = { 𝑦 ∣ ∀ 𝑥 ∈ 𝐵 𝑦 ∈ ( 𝐴 ∪ 𝑥 ) } |
| 9 |
|
df-un |
⊢ ( 𝐴 ∪ ∩ 𝐵 ) = { 𝑦 ∣ ( 𝑦 ∈ 𝐴 ∨ 𝑦 ∈ ∩ 𝐵 ) } |
| 10 |
|
df-iin |
⊢ ∩ 𝑥 ∈ 𝐵 ( 𝐴 ∪ 𝑥 ) = { 𝑦 ∣ ∀ 𝑥 ∈ 𝐵 𝑦 ∈ ( 𝐴 ∪ 𝑥 ) } |
| 11 |
8 9 10
|
3eqtr4i |
⊢ ( 𝐴 ∪ ∩ 𝐵 ) = ∩ 𝑥 ∈ 𝐵 ( 𝐴 ∪ 𝑥 ) |