Step |
Hyp |
Ref |
Expression |
1 |
|
dif0 |
⊢ ( V ∖ ∅ ) = V |
2 |
|
0iun |
⊢ ∪ 𝑥 ∈ ∅ 𝐵 = ∅ |
3 |
2
|
difeq2i |
⊢ ( V ∖ ∪ 𝑥 ∈ ∅ 𝐵 ) = ( V ∖ ∅ ) |
4 |
|
0iin |
⊢ ∩ 𝑥 ∈ ∅ ( V ∖ 𝐵 ) = V |
5 |
1 3 4
|
3eqtr4ri |
⊢ ∩ 𝑥 ∈ ∅ ( V ∖ 𝐵 ) = ( V ∖ ∪ 𝑥 ∈ ∅ 𝐵 ) |
6 |
|
iineq1 |
⊢ ( 𝐴 = ∅ → ∩ 𝑥 ∈ 𝐴 ( V ∖ 𝐵 ) = ∩ 𝑥 ∈ ∅ ( V ∖ 𝐵 ) ) |
7 |
|
iuneq1 |
⊢ ( 𝐴 = ∅ → ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ 𝑥 ∈ ∅ 𝐵 ) |
8 |
7
|
difeq2d |
⊢ ( 𝐴 = ∅ → ( V ∖ ∪ 𝑥 ∈ 𝐴 𝐵 ) = ( V ∖ ∪ 𝑥 ∈ ∅ 𝐵 ) ) |
9 |
5 6 8
|
3eqtr4a |
⊢ ( 𝐴 = ∅ → ∩ 𝑥 ∈ 𝐴 ( V ∖ 𝐵 ) = ( V ∖ ∪ 𝑥 ∈ 𝐴 𝐵 ) ) |
10 |
|
iindif2 |
⊢ ( 𝐴 ≠ ∅ → ∩ 𝑥 ∈ 𝐴 ( V ∖ 𝐵 ) = ( V ∖ ∪ 𝑥 ∈ 𝐴 𝐵 ) ) |
11 |
9 10
|
pm2.61ine |
⊢ ∩ 𝑥 ∈ 𝐴 ( V ∖ 𝐵 ) = ( V ∖ ∪ 𝑥 ∈ 𝐴 𝐵 ) |