Metamath Proof Explorer


Theorem iinvdif

Description: The indexed intersection of a complement. (Contributed by Gérard Lang, 5-Aug-2018)

Ref Expression
Assertion iinvdif 𝑥𝐴 ( V ∖ 𝐵 ) = ( V ∖ 𝑥𝐴 𝐵 )

Proof

Step Hyp Ref Expression
1 dif0 ( V ∖ ∅ ) = V
2 0iun 𝑥 ∈ ∅ 𝐵 = ∅
3 2 difeq2i ( V ∖ 𝑥 ∈ ∅ 𝐵 ) = ( V ∖ ∅ )
4 0iin 𝑥 ∈ ∅ ( V ∖ 𝐵 ) = V
5 1 3 4 3eqtr4ri 𝑥 ∈ ∅ ( V ∖ 𝐵 ) = ( V ∖ 𝑥 ∈ ∅ 𝐵 )
6 iineq1 ( 𝐴 = ∅ → 𝑥𝐴 ( V ∖ 𝐵 ) = 𝑥 ∈ ∅ ( V ∖ 𝐵 ) )
7 iuneq1 ( 𝐴 = ∅ → 𝑥𝐴 𝐵 = 𝑥 ∈ ∅ 𝐵 )
8 7 difeq2d ( 𝐴 = ∅ → ( V ∖ 𝑥𝐴 𝐵 ) = ( V ∖ 𝑥 ∈ ∅ 𝐵 ) )
9 5 6 8 3eqtr4a ( 𝐴 = ∅ → 𝑥𝐴 ( V ∖ 𝐵 ) = ( V ∖ 𝑥𝐴 𝐵 ) )
10 iindif2 ( 𝐴 ≠ ∅ → 𝑥𝐴 ( V ∖ 𝐵 ) = ( V ∖ 𝑥𝐴 𝐵 ) )
11 9 10 pm2.61ine 𝑥𝐴 ( V ∖ 𝐵 ) = ( V ∖ 𝑥𝐴 𝐵 )