| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dif0 |
⊢ ( V ∖ ∅ ) = V |
| 2 |
|
0iun |
⊢ ∪ 𝑥 ∈ ∅ 𝐵 = ∅ |
| 3 |
2
|
difeq2i |
⊢ ( V ∖ ∪ 𝑥 ∈ ∅ 𝐵 ) = ( V ∖ ∅ ) |
| 4 |
|
0iin |
⊢ ∩ 𝑥 ∈ ∅ ( V ∖ 𝐵 ) = V |
| 5 |
1 3 4
|
3eqtr4ri |
⊢ ∩ 𝑥 ∈ ∅ ( V ∖ 𝐵 ) = ( V ∖ ∪ 𝑥 ∈ ∅ 𝐵 ) |
| 6 |
|
iineq1 |
⊢ ( 𝐴 = ∅ → ∩ 𝑥 ∈ 𝐴 ( V ∖ 𝐵 ) = ∩ 𝑥 ∈ ∅ ( V ∖ 𝐵 ) ) |
| 7 |
|
iuneq1 |
⊢ ( 𝐴 = ∅ → ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ 𝑥 ∈ ∅ 𝐵 ) |
| 8 |
7
|
difeq2d |
⊢ ( 𝐴 = ∅ → ( V ∖ ∪ 𝑥 ∈ 𝐴 𝐵 ) = ( V ∖ ∪ 𝑥 ∈ ∅ 𝐵 ) ) |
| 9 |
5 6 8
|
3eqtr4a |
⊢ ( 𝐴 = ∅ → ∩ 𝑥 ∈ 𝐴 ( V ∖ 𝐵 ) = ( V ∖ ∪ 𝑥 ∈ 𝐴 𝐵 ) ) |
| 10 |
|
iindif2 |
⊢ ( 𝐴 ≠ ∅ → ∩ 𝑥 ∈ 𝐴 ( V ∖ 𝐵 ) = ( V ∖ ∪ 𝑥 ∈ 𝐴 𝐵 ) ) |
| 11 |
9 10
|
pm2.61ine |
⊢ ∩ 𝑥 ∈ 𝐴 ( V ∖ 𝐵 ) = ( V ∖ ∪ 𝑥 ∈ 𝐴 𝐵 ) |