Metamath Proof Explorer


Theorem iinxprg

Description: Indexed intersection with an unordered pair index. (Contributed by NM, 25-Jan-2012)

Ref Expression
Hypotheses iinxprg.1 ( 𝑥 = 𝐴𝐶 = 𝐷 )
iinxprg.2 ( 𝑥 = 𝐵𝐶 = 𝐸 )
Assertion iinxprg ( ( 𝐴𝑉𝐵𝑊 ) → 𝑥 ∈ { 𝐴 , 𝐵 } 𝐶 = ( 𝐷𝐸 ) )

Proof

Step Hyp Ref Expression
1 iinxprg.1 ( 𝑥 = 𝐴𝐶 = 𝐷 )
2 iinxprg.2 ( 𝑥 = 𝐵𝐶 = 𝐸 )
3 1 eleq2d ( 𝑥 = 𝐴 → ( 𝑦𝐶𝑦𝐷 ) )
4 2 eleq2d ( 𝑥 = 𝐵 → ( 𝑦𝐶𝑦𝐸 ) )
5 3 4 ralprg ( ( 𝐴𝑉𝐵𝑊 ) → ( ∀ 𝑥 ∈ { 𝐴 , 𝐵 } 𝑦𝐶 ↔ ( 𝑦𝐷𝑦𝐸 ) ) )
6 5 abbidv ( ( 𝐴𝑉𝐵𝑊 ) → { 𝑦 ∣ ∀ 𝑥 ∈ { 𝐴 , 𝐵 } 𝑦𝐶 } = { 𝑦 ∣ ( 𝑦𝐷𝑦𝐸 ) } )
7 df-iin 𝑥 ∈ { 𝐴 , 𝐵 } 𝐶 = { 𝑦 ∣ ∀ 𝑥 ∈ { 𝐴 , 𝐵 } 𝑦𝐶 }
8 df-in ( 𝐷𝐸 ) = { 𝑦 ∣ ( 𝑦𝐷𝑦𝐸 ) }
9 6 7 8 3eqtr4g ( ( 𝐴𝑉𝐵𝑊 ) → 𝑥 ∈ { 𝐴 , 𝐵 } 𝐶 = ( 𝐷𝐸 ) )