Step |
Hyp |
Ref |
Expression |
1 |
|
iinxprg.1 |
⊢ ( 𝑥 = 𝐴 → 𝐶 = 𝐷 ) |
2 |
|
iinxprg.2 |
⊢ ( 𝑥 = 𝐵 → 𝐶 = 𝐸 ) |
3 |
1
|
eleq2d |
⊢ ( 𝑥 = 𝐴 → ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) |
4 |
2
|
eleq2d |
⊢ ( 𝑥 = 𝐵 → ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐸 ) ) |
5 |
3 4
|
ralprg |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( ∀ 𝑥 ∈ { 𝐴 , 𝐵 } 𝑦 ∈ 𝐶 ↔ ( 𝑦 ∈ 𝐷 ∧ 𝑦 ∈ 𝐸 ) ) ) |
6 |
5
|
abbidv |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → { 𝑦 ∣ ∀ 𝑥 ∈ { 𝐴 , 𝐵 } 𝑦 ∈ 𝐶 } = { 𝑦 ∣ ( 𝑦 ∈ 𝐷 ∧ 𝑦 ∈ 𝐸 ) } ) |
7 |
|
df-iin |
⊢ ∩ 𝑥 ∈ { 𝐴 , 𝐵 } 𝐶 = { 𝑦 ∣ ∀ 𝑥 ∈ { 𝐴 , 𝐵 } 𝑦 ∈ 𝐶 } |
8 |
|
df-in |
⊢ ( 𝐷 ∩ 𝐸 ) = { 𝑦 ∣ ( 𝑦 ∈ 𝐷 ∧ 𝑦 ∈ 𝐸 ) } |
9 |
6 7 8
|
3eqtr4g |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ∩ 𝑥 ∈ { 𝐴 , 𝐵 } 𝐶 = ( 𝐷 ∩ 𝐸 ) ) |