| Step |
Hyp |
Ref |
Expression |
| 1 |
|
1re |
⊢ 1 ∈ ℝ |
| 2 |
|
resubcl |
⊢ ( ( 1 ∈ ℝ ∧ 𝑋 ∈ ℝ ) → ( 1 − 𝑋 ) ∈ ℝ ) |
| 3 |
1 2
|
mpan |
⊢ ( 𝑋 ∈ ℝ → ( 1 − 𝑋 ) ∈ ℝ ) |
| 4 |
3
|
3ad2ant1 |
⊢ ( ( 𝑋 ∈ ℝ ∧ 0 ≤ 𝑋 ∧ 𝑋 ≤ 1 ) → ( 1 − 𝑋 ) ∈ ℝ ) |
| 5 |
|
simp3 |
⊢ ( ( 𝑋 ∈ ℝ ∧ 0 ≤ 𝑋 ∧ 𝑋 ≤ 1 ) → 𝑋 ≤ 1 ) |
| 6 |
|
simp1 |
⊢ ( ( 𝑋 ∈ ℝ ∧ 0 ≤ 𝑋 ∧ 𝑋 ≤ 1 ) → 𝑋 ∈ ℝ ) |
| 7 |
|
subge0 |
⊢ ( ( 1 ∈ ℝ ∧ 𝑋 ∈ ℝ ) → ( 0 ≤ ( 1 − 𝑋 ) ↔ 𝑋 ≤ 1 ) ) |
| 8 |
1 6 7
|
sylancr |
⊢ ( ( 𝑋 ∈ ℝ ∧ 0 ≤ 𝑋 ∧ 𝑋 ≤ 1 ) → ( 0 ≤ ( 1 − 𝑋 ) ↔ 𝑋 ≤ 1 ) ) |
| 9 |
5 8
|
mpbird |
⊢ ( ( 𝑋 ∈ ℝ ∧ 0 ≤ 𝑋 ∧ 𝑋 ≤ 1 ) → 0 ≤ ( 1 − 𝑋 ) ) |
| 10 |
|
simp2 |
⊢ ( ( 𝑋 ∈ ℝ ∧ 0 ≤ 𝑋 ∧ 𝑋 ≤ 1 ) → 0 ≤ 𝑋 ) |
| 11 |
|
subge02 |
⊢ ( ( 1 ∈ ℝ ∧ 𝑋 ∈ ℝ ) → ( 0 ≤ 𝑋 ↔ ( 1 − 𝑋 ) ≤ 1 ) ) |
| 12 |
1 6 11
|
sylancr |
⊢ ( ( 𝑋 ∈ ℝ ∧ 0 ≤ 𝑋 ∧ 𝑋 ≤ 1 ) → ( 0 ≤ 𝑋 ↔ ( 1 − 𝑋 ) ≤ 1 ) ) |
| 13 |
10 12
|
mpbid |
⊢ ( ( 𝑋 ∈ ℝ ∧ 0 ≤ 𝑋 ∧ 𝑋 ≤ 1 ) → ( 1 − 𝑋 ) ≤ 1 ) |
| 14 |
4 9 13
|
3jca |
⊢ ( ( 𝑋 ∈ ℝ ∧ 0 ≤ 𝑋 ∧ 𝑋 ≤ 1 ) → ( ( 1 − 𝑋 ) ∈ ℝ ∧ 0 ≤ ( 1 − 𝑋 ) ∧ ( 1 − 𝑋 ) ≤ 1 ) ) |
| 15 |
|
elicc01 |
⊢ ( 𝑋 ∈ ( 0 [,] 1 ) ↔ ( 𝑋 ∈ ℝ ∧ 0 ≤ 𝑋 ∧ 𝑋 ≤ 1 ) ) |
| 16 |
|
elicc01 |
⊢ ( ( 1 − 𝑋 ) ∈ ( 0 [,] 1 ) ↔ ( ( 1 − 𝑋 ) ∈ ℝ ∧ 0 ≤ ( 1 − 𝑋 ) ∧ ( 1 − 𝑋 ) ≤ 1 ) ) |
| 17 |
14 15 16
|
3imtr4i |
⊢ ( 𝑋 ∈ ( 0 [,] 1 ) → ( 1 − 𝑋 ) ∈ ( 0 [,] 1 ) ) |