Step |
Hyp |
Ref |
Expression |
1 |
|
eqid |
⊢ ( TopOpen ‘ ℂfld ) = ( TopOpen ‘ ℂfld ) |
2 |
|
dfii2 |
⊢ II = ( ( topGen ‘ ran (,) ) ↾t ( 0 [,] 1 ) ) |
3 |
|
unitssre |
⊢ ( 0 [,] 1 ) ⊆ ℝ |
4 |
3
|
a1i |
⊢ ( ⊤ → ( 0 [,] 1 ) ⊆ ℝ ) |
5 |
|
iirev |
⊢ ( 𝑥 ∈ ( 0 [,] 1 ) → ( 1 − 𝑥 ) ∈ ( 0 [,] 1 ) ) |
6 |
5
|
adantl |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ( 0 [,] 1 ) ) → ( 1 − 𝑥 ) ∈ ( 0 [,] 1 ) ) |
7 |
1
|
cnfldtopon |
⊢ ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ ) |
8 |
7
|
a1i |
⊢ ( ⊤ → ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ ) ) |
9 |
|
1cnd |
⊢ ( ⊤ → 1 ∈ ℂ ) |
10 |
8 8 9
|
cnmptc |
⊢ ( ⊤ → ( 𝑥 ∈ ℂ ↦ 1 ) ∈ ( ( TopOpen ‘ ℂfld ) Cn ( TopOpen ‘ ℂfld ) ) ) |
11 |
8
|
cnmptid |
⊢ ( ⊤ → ( 𝑥 ∈ ℂ ↦ 𝑥 ) ∈ ( ( TopOpen ‘ ℂfld ) Cn ( TopOpen ‘ ℂfld ) ) ) |
12 |
1
|
subcn |
⊢ − ∈ ( ( ( TopOpen ‘ ℂfld ) ×t ( TopOpen ‘ ℂfld ) ) Cn ( TopOpen ‘ ℂfld ) ) |
13 |
12
|
a1i |
⊢ ( ⊤ → − ∈ ( ( ( TopOpen ‘ ℂfld ) ×t ( TopOpen ‘ ℂfld ) ) Cn ( TopOpen ‘ ℂfld ) ) ) |
14 |
8 10 11 13
|
cnmpt12f |
⊢ ( ⊤ → ( 𝑥 ∈ ℂ ↦ ( 1 − 𝑥 ) ) ∈ ( ( TopOpen ‘ ℂfld ) Cn ( TopOpen ‘ ℂfld ) ) ) |
15 |
1 2 2 4 4 6 14
|
cnmptre |
⊢ ( ⊤ → ( 𝑥 ∈ ( 0 [,] 1 ) ↦ ( 1 − 𝑥 ) ) ∈ ( II Cn II ) ) |
16 |
15
|
mptru |
⊢ ( 𝑥 ∈ ( 0 [,] 1 ) ↦ ( 1 − 𝑥 ) ) ∈ ( II Cn II ) |